K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Use BĐT C-S ta có

x(1-yz)+y+z\(\le\sqrt{\left(x^2+\left(y+z\right)^2\right)\left(\left(1-yz\right)^2+1^2\right)}\)=\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\)

Vậy chỉ cần CM:\(\sqrt{\left(2+2yz\right)\left(2+\left(yz\right)^2-2yz\right)}\le2\)

\(\Leftrightarrow\left(1+yz\right)\left(2+\left(yz\right)^2-2yz\right)\le2\)

\(\Leftrightarrow\left(yz\right)^3\)\(\le\left(yz\right)^2\)

BĐT cuối cùng đúng vì:

2=x\(^2\)+y\(^2\)+z\(^2\)\(\ge\)y\(^2\)+z\(^2\)\(\ge\)2\(\left|yz\right|\)\(\Rightarrow\left|yz\right|\le1\)

\(\Rightarrow\left(yz\right)^3\)\(\le\)(yz)\(^2\)

BĐT đc chứng minh

đẳng thức xảy ra chẳng hạn 1 số =0 và 2 số =1

31 tháng 7 2019

\(A=\frac{1}{2}.xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{1}{4}\left(2xy+x^2+y^2\right)^2=2\)

11 tháng 5 2019

Em có cách này anh/chị check thử ạ.

Dự đoán xảy ra cực trị tại: x = 2; y = 1; z = 0

Áp dụng BĐT quen thuộc: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\),ta có: \(1\ge\frac{1}{x+1}+\frac{1}{y+2}+\frac{1}{z+3}\ge\frac{9}{x+y+z+6}\)

\(\Rightarrow x+y+z+6\ge9\Leftrightarrow x+y+z\ge3\)

Đặt \(t=x+y+z\ge3\).Ta cần tìm min của: \(P\left(t\right)=t+\frac{1}{t}\) với \(t\ge3\)

Ta có: \(P\left(t\right)=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8t}{9}\)

\(\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8t}{9}=\frac{2}{3}+\frac{8t}{9}\ge\frac{2}{3}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}t=3\\\frac{1}{x+1}=\frac{1}{y+2}=\frac{1}{z+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=3\\x+1=y+2=z+3=3\left(2\right)\end{cases}}\)

Giải (2) ta được x = 2; y = 1; z = 0 (t/m x + y + z = 3)

Vậy \(P_{min}=\frac{10}{3}\Leftrightarrow x=2;y=1;z=0\)

AH
Akai Haruma
Giáo viên
11 tháng 3 2019

Lời giải:

\(x,y,z\in [0;1]\Rightarrow xy; yz,xz\geq xyz\)

\(\Rightarrow P=\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{xy+1}\leq \frac{x}{1+xyz}+\frac{y}{1+xyz}+\frac{z}{1+xyz}=\frac{x+y+z}{xyz+1}(*)\)

\(x,y,z\in [0;1]\Rightarrow \left\{\begin{matrix} (x-1)(y-1)\geq 0\\ (xy-1)(z-1)\geq 0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} xy+1\geq x+y\\ xyz+1\geq xy+z\end{matrix}\right.\)

\(\Rightarrow xyz+2+xy\geq x+y+z+xy\)

\(\Leftrightarrow xyz+2\geq x+y+z\)

Mà: \(xyz+2\leq 2xyz+2=2(xyz+1)\)

\(\Rightarrow x+y+z\leq 2(xyz+1)(**)\)

Từ \((*); (**)\Rightarrow P\leq \frac{2(xyz+1)}{xyz+1}=2\) (đpcm)

Dấu "=" xảy ra khi \((x,y,z)=(1,1,0)\)

10 tháng 4 2021

Ấp dụng bất đẳng thức Bu-nhi -a- cốp-xki :

\(P^2 = (2x + 3y)^2 \leq (2^2+3^2)(x^2+y^2)=13a^2=117 \rightarrow a^2 = 9 \rightarrow a= 3 hoặc -3\)