K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

|x+8/5| + |2,2-2y| = 0 ( không thể < 0 )

=> x + 8/5 = 2,2 - 2y = 0

=> x = -8/5; 2y = 2,2

=> x = -8/5; y = 1,1

8 tháng 1 2016

\(y=1,1\)

x=-8/5

12 tháng 8 2016

Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)

Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)

12 tháng 8 2016

Ta có

\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)

=> \(x,y\in\varnothing\)

12 tháng 8 2016

Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)

=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=>  \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)

12 tháng 8 2016

kb vs mk nha

4 tháng 7 2016

\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)

\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)

\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)

Vậy x = -1,6; y = 1,1

Ủng hộ mk nha ^_-

8 tháng 7 2016

a) \(\Leftrightarrow\left|x-3\right|=0;\left|y-2x\right|=0;\left|2z-x+y\right|=0\) 

\(\Leftrightarrow x=3;y=2x;2z=-y+x\)

Ta có : y = 2x => y = 2 . 3 = 6

 và 2z = -y + x  => 2z = -6 + 3 = -3  => z = \(-\frac{3}{2}\)

b) \(\Leftrightarrow\left|x-y\right|+\left|2y+x-\frac{1}{2}\right|+\left|x+y+z\right|=0\) (vĩ mỗi số hạng trong tổng đều lớn hơn hoặc bằng 0)

\(\Leftrightarrow\left|x-y\right|=0;\left|2y+x-\frac{1}{2}\right|=0;\left|x+y+z\right|=0\)

\(\Leftrightarrow x=y;2y+x=\frac{1}{2};x+y=-z\)

Vì x = y nên \(2y+x=3y=\frac{1}{2}\Rightarrow x=y=\frac{1}{2}:3=\frac{1}{6}\)

và \(-z=x+y=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}\Rightarrow z=-\frac{1}{3}\)

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha