Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)
Lời giải:
\(M=x^2y^2(x^2+y^2)=xy.xy(x^2+y^2)\)
\(\Leftrightarrow M=\frac{xy}{2}.2xy(x^2+y^2)\)
Áp dụng BĐT Cô-si ngược dấu:
\(2xy(x^2+y^2)\leq \left(\frac{2xy+x^2+y^2}{2}\right)^2=\left(\frac{(x+y)^2}{2}\right)^2=\frac{(x+y)^4}{4}=\frac{2^4}{4}=4\)
\(xy\leq \left(\frac{x+y}{2}\right)^2=\left(\frac{2}{2}\right)^2=1\)
Do đó: \(M=\frac{xy}{2}.2xy(x^2+y^2)\leq \frac{1}{2}.4=2\)
Vậy \(M_{\max}=2\Leftrightarrow x=y=1\)
M đạt giá trị lớn nhất <=> \(\frac{1}{M}\) đạt giá trị nhỏ nhất
Do đó, ta xét :
\(\frac{1}{M}=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\), (dấu "=" xảy ra khi a = b) , ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)
Lại có : \(x^2+y^2\ge2xy\Rightarrow\frac{2}{xy}\ge\frac{4}{x^2+y^2}=\frac{4}{4}=1\)
Suy ra \(\frac{1}{M}\ge\sqrt{2}+1\Rightarrow M\le\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
Dấu đẳng thức xảy ra khi \(\begin{cases}x=y\\x^2+y^2=4\end{cases}\) \(\Leftrightarrow x=y=\sqrt{2}\)
Vậy Max M = \(\sqrt{2}-1\) tại \(x=y=\sqrt{2}\)