K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

S=\(3^0+3^2+3^4+...+3^{2002}\)

\(3^2\cdot S=3^2+3^4+3^6+...+3^{2004}\)

9S-S=\(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)

8S=\(3^{2004}-3^0\)

8S-\(3^{2004}-1\)=\(3^{2004}-1-3^{2004}-1\)=-2

 

1 tháng 2 2017

a) S = 30 + 32 + 34 + ..... + 32002

9S = 32 + 34 + ..... + 32002 + 32004

9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)

8S = 32004 - 30

S = \(\frac{3^{2004}-1}{8}\)

b) S = 30 + 32 + 34 + ..... + 32002

S = (30 + 32 + 34) + (36 + 38  + 310) + ..... + (32000 + 32001 + 32002)

S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)

S = 91 + 36 . 91 + ...... + 32000 . 91

S = 91 . (1 + 36 + ...... + 32000)

S = 7 . 13 . (1 + 36 + ...... + 32000)

1 tháng 2 2017

thank you!!!♥♥♥

1 tháng 8 2019

 a, \(S=3^0+3^2+3^4+....+3^{2002}\)

\(3S=3+3^3+....+3^{2003}\)

\(2S=3^{2003}-1\)

b,  \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)

=> (đpcm)

18 tháng 5 2017

Easy????

a) Ta có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=> 32S = \(3^2+3^4+3^6+...+3^{2004}\)

=> 9S - S = \(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+...+3^{2002}\right)\)

=> 8S = \(3^{2004}-3^0\)

=> S = \(\dfrac{3^{2004}-1}{8}\)

b) Ta lại có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)

=\(\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

= \(3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+\)\(3^{1998}\left(1+3^2+3^4\right)\)

= \(91\left(3^0+3^6+...+3^{1998}\right)\)

Vì 91 \(⋮\) 7 => \(91\left(3^0+3^6+...+3^{1998}\right)\) \(⋮\) 7

=> S \(⋮\) 7 ( đpcm)

5 tháng 3 2018

\(a)\) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)

\(9S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)

\(8S=3^{2004}-3^0\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

Vậy \(S=\frac{3^{2004}-1}{8}\)

5 tháng 3 2018

a) \(S=3^0+3^2+3^4+3^6+....+3^{2002}\)

\(\Rightarrow3^2.S=3^2+3^4+3^6+3^8+....+3^{2004}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+....+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)

\(\Rightarrow8S=3^{2004}-1\)

\(\Rightarrow S=\frac{3^{2004}-1}{8}\)

Vậy \(S=\frac{3^{2004}-1}{8}\)

b) Ta có :

\(S=3^0+3^2+3^4+3^6+....+3^{2002}\)

Tổng \(S\)có số số hạng là :

( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng )

Ta có : \(1002⋮3\)nên khi ta nhóm 3 số liên tiếp lại thành 1 nhóm thì sẽ không có số nào thừa cả 

\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)

\(\Rightarrow S=3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+3^{1998}\left(1+3^2+3^4\right)\)

\(\Rightarrow S=1.91+3^6.91+....+3^{1998}.91\)

\(\Rightarrow S=91.\left(1+3^6+....+3^{1998}\right)\)

Vì \(1+3^6+....+3^{1998}\inℤ\)nên \(91.\left(1+3^6+....+3^{1998}\right)\inℤ\)

Vì \(91⋮7\)nên \(91.\left(1+3^6+....+3^{1998}\right)⋮7\)

Vậy \(S=3^0+3^2+3^4+3^6+....+3^{2002}⋮7\left(ĐPCM\right)\)

A=13+57+...+20012003+2005S=1−3+5−7+...+2001−2003+2005

=(13)+(57)+...+(20012003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)

=(2).1002+2005=(−2).1002+2005

=2004+2005=−2004+2005

=1