Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S = 30 + 32 + 34 + ..... + 32002
9S = 32 + 34 + ..... + 32002 + 32004
9S - S = (32 + 34 + ..... + 32002 + 32004) - (30 + 32 + 34 + ..... + 32002)
8S = 32004 - 30
S = \(\frac{3^{2004}-1}{8}\)
b) S = 30 + 32 + 34 + ..... + 32002
S = (30 + 32 + 34) + (36 + 38 + 310) + ..... + (32000 + 32001 + 32002)
S = (1 + 9 + 81) + 36.(1 + 9 + 81) + ..... + 32000.(1 + 9 + 81)
S = 91 + 36 . 91 + ...... + 32000 . 91
S = 91 . (1 + 36 + ...... + 32000)
S = 7 . 13 . (1 + 36 + ...... + 32000)
a, \(S=3^0+3^2+3^4+....+3^{2002}\)
\(3S=3+3^3+....+3^{2003}\)
\(2S=3^{2003}-1\)
b, \(S=\left(3^0+3^2+3^4\right)+\left(3^4+3^6+3^8\right)+...+\left(3^{2000}+3^{1998}+3^{2002}\right)⋮7\)
=> (đpcm)
Easy????
a) Ta có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)
=> 32S = \(3^2+3^4+3^6+...+3^{2004}\)
=> 9S - S = \(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+...+3^{2002}\right)\)
=> 8S = \(3^{2004}-3^0\)
=> S = \(\dfrac{3^{2004}-1}{8}\)
b) Ta lại có: S = \(3^0+3^{2^{ }}+...+3^{2002}\)
=\(\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
= \(3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+\)\(3^{1998}\left(1+3^2+3^4\right)\)
= \(91\left(3^0+3^6+...+3^{1998}\right)\)
Vì 91 \(⋮\) 7 => \(91\left(3^0+3^6+...+3^{1998}\right)\) \(⋮\) 7
=> S \(⋮\) 7 ( đpcm)
\(a)\) \(S=3^0+3^2+3^4+3^6+...+3^{2002}\)
\(9S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2002}\right)\)
\(8S=3^{2004}-3^0\)
\(8S=3^{2004}-1\)
\(S=\frac{3^{2004}-1}{8}\)
Vậy \(S=\frac{3^{2004}-1}{8}\)
a) \(S=3^0+3^2+3^4+3^6+....+3^{2002}\)
\(\Rightarrow3^2.S=3^2+3^4+3^6+3^8+....+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+....+3^{2004}\right)-\left(3^0+3^2+3^4+3^6+....+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
Vậy \(S=\frac{3^{2004}-1}{8}\)
b) Ta có :
\(S=3^0+3^2+3^4+3^6+....+3^{2002}\)
Tổng \(S\)có số số hạng là :
( 2002 - 0 ) : 2 + 1 = 1002 ( số hạng )
Ta có : \(1002⋮3\)nên khi ta nhóm 3 số liên tiếp lại thành 1 nhóm thì sẽ không có số nào thừa cả
\(\Rightarrow S=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+....+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(\Rightarrow S=3^0\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+....+3^{1998}\left(1+3^2+3^4\right)\)
\(\Rightarrow S=1.91+3^6.91+....+3^{1998}.91\)
\(\Rightarrow S=91.\left(1+3^6+....+3^{1998}\right)\)
Vì \(1+3^6+....+3^{1998}\inℤ\)nên \(91.\left(1+3^6+....+3^{1998}\right)\inℤ\)
Vì \(91⋮7\)nên \(91.\left(1+3^6+....+3^{1998}\right)⋮7\)
Vậy \(S=3^0+3^2+3^4+3^6+....+3^{2002}⋮7\left(ĐPCM\right)\)
A=1−3+5−7+...+2001−2003+2005S=1−3+5−7+...+2001−2003+2005
=(1−3)+(5−7)+...+(2001−2003)+2005=(1−3)+(5−7)+...+(2001−2003)+2005(Có 1002 cặp)
=(−2).1002+2005=(−2).1002+2005
=−2004+2005=−2004+2005
=1
S=\(3^0+3^2+3^4+...+3^{2002}\)
\(3^2\cdot S=3^2+3^4+3^6+...+3^{2004}\)
9S-S=\(\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
8S=\(3^{2004}-3^0\)
8S-\(3^{2004}-1\)=\(3^{2004}-1-3^{2004}-1\)=-2