K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)\(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(1)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c)\(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(ck+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\)(1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)(2)

Từ (1) và(2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

k cho mình nhé

https://bingbe.com/search?category=question&q=Cho%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20a%20%2Fb%20%3D%20c%20%2Fd%20.%C2%A0Ch%E1%BB%A9ng%20minh%20c%C3%B3%20t%E1%BB%89%20l%E1%BB%87%20th%E1%BB%A9c%20sau%20%3A%0A%0A(%20a%20%2B%20c%C2%A0)2%C2%A0%2F%20(%20b%20%2B%20d%20)2%C2%A0%3D%20a2%C2%A0%20%2B%C2%A0%C2%A0c2%C2%A0%2F%20b2%20%C2%A0%2B%20d%C2%A02%C2%A0%0A%0A(%20Gi%E1%BA%A3%20thi%E1%BA%BFt%20c%C3%A1c%20t%E1%BB%89%20s%E1%BB%91%20%C4%91%E1%BB%81u%20c%C3%B3%20ngh%C4%A9a%20)%C2%A0%0A%0A%C2%A0

Xem ở lick này nhé (mình gửi cho)

Học tốt!!!!!!!!!!!!!

28 tháng 7 2019

@@ chị linh Link dài vậy giải lun phải hơn không

2 tháng 8 2016

Ta có:

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a) \(\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)

\(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b) \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

c) \(\left(\frac{a+b}{c+d}\right)^2=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2.\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2\right)+1}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) , (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 11 2018

c) có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a^2}{^{c^2}}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

   Lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) có \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

các câu còn lại bạn tự làm đi! HI.......

13 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}.\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\Rightarrow\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)(T/c dãy tỷ số bằng nhau)

\(\Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

24 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

Suy ra: \(\frac{2a+3b}{2a-3b}=\frac{2.bk+3b}{2.bk-3b}=\frac{b.\left(2k+3\right)}{b.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)

\(\frac{2c+3d}{2c-3d}=\frac{2.dk+3d}{2.dk-3d}=\frac{d.\left(2k+3\right)}{d.\left(2k-3\right)}=\)\(\frac{2k+3}{2k-3}\)

Vậy \(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

24 tháng 7 2017

Ta có:\(\frac{a}{b}=\frac{c}{d}\)=>\(\frac{a}{c}=\frac{b}{d}\)=>\(\frac{2a}{2c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)

=>\(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)=>\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

Vậy\(\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

28 tháng 8 2017

a, Có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\)

Có: \(\frac{2a-3b}{2c-3d}=\frac{2a+3b}{2c+3d}\Leftrightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\)

b, Co: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{ab}{cd}\)

Lại có:\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Tu (1)&(2),có: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

                                                

NV
10 tháng 4 2019

a/ Với

\(\frac{3x-y}{x+y}=\frac{3}{4}=\frac{3\frac{x}{y}-1}{\frac{x}{y}+1}\Rightarrow3\left(\frac{x}{y}+1\right)=4\left(3\frac{x}{y}-1\right)\)

\(\Rightarrow3\frac{x}{y}+3=12\frac{x}{y}-4\Rightarrow9\frac{x}{y}=7\Rightarrow\frac{x}{y}=\frac{7}{9}\)

b/

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)

\(\Rightarrow\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\Rightarrow\frac{2a+3a}{2a-3b}=\frac{2c+3d}{2c-3d}\)

11 tháng 8 2017

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{2a}{2c}=\dfrac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{2a}{2c}=\dfrac{3b}{3d}=\dfrac{2a-3b}{2c-3d}=\dfrac{2a+3b}{2c+3d}\) ( đpcm )

b) Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\) ( đpcm ).

11 tháng 8 2017

Theo đề bài ta có:
a/b=c/d=a/c=b/d
Áp dụng tính chất dãy tỉ số bằng nhau:
a/c=b/d=2a/2c=3b/3d=2a+3b/2c+3d
=2a-3b/2c-3d
=>2a+3b/2c+3d=2a-3b/2c-3d=2a+3b/2a-3b=2c+3d/2c-3d (đpcm)
b) Theo đề bài ta có:
a/b=c/d=ab/b^2=cd/d^2=ab/cd=b^2/d^2 (*)
Áp dụng tính chất dãy tỉ số bằng nhau :
a/b=c/d=a/c=b/d=a^2/c^2/b^2/d^2=a^2-b^2/c^2-d^2(**)
Từ (*) và(**) suy ra ab/cd=a^2-b^2/c^2-d^2 (đpcm)
(có thể trình bày theo cách khác)