K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

Mỗi tỉ số đã cho bằng \(\frac{a+b+c}{b+c+d}\). Tích của ba tỉ số đã cho bằng \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\).

Mặt khác tích đó cũng bằng : \(\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

Vậy : ...

3 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
2)\(\frac{a-c}{b-d}=\frac{a+c}{b+d}\Rightarrow\frac{a-c}{a+c}=\frac{b-d}{b+d}\)
3) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{a}{a+c}=\frac{b}{b+d}\)
4)\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{a}{a-c}=\frac{b}{b-d}\)
5)\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\frac{c}{a+c}=\frac{d}{b+d}\)
6)\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\Rightarrow\frac{c}{a-c}=\frac{d}{b-d}\)

3 tháng 7 2016

Sử dụng t/c dãy tỉ số=nhau + hoán vị trung tỉ

23 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\left(1\right)\)

\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\left(2\right)\)

Từ (1); (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\left(đpcm\right)\)

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

11 tháng 11 2018

 \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Ta có : \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{\left(a+b\right)^3}{\left(c+d\right)^3}=\left(\frac{a+b}{c+d}\right)^3\)(1)

Ta lại có : \(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\left(\frac{a}{c}\right)^3=\left(\frac{b}{d}\right)^3=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

9 tháng 12 2018

Bài 1:

Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c

<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1

Sai rồi em ơi 2 trường hợp cơ 

+, bằng -1

+, bằng 2

24 tháng 10 2018

\(1,\)

\(a,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)

\(b,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

\(3,\)

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(4,\) https://hoc24.vn/hoi-dap/question/157445.html