Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB(=90)
góc B chung
=>tam giác ABC đồng dạng vs t.giác HBA(gg)
b)CMTT có tam giác ABC đồng dạng t.giác HAC
=>t.giác HBA đồng dạng t.giác HAC
=>AH/BH=HC/AH
=>AH^2=BH.CH
c)+)xét tam giác BAD và tam giác BHI có:
BAD=BHI=90
ABD=HBI(BD là phân giác ABC)
=>T.giác BAD đồng dạng vs tam giac BHI(g.g)
=>AB/BH=AD/HI (1)
+)Tam giác ABC đồng dạng tam giac HBA ( CMT)
=>AB/BH=BC/AB (2)
+)(1);(2)=>AD/HI=BC/AB
Mà có CD/AD=BC/AB(BD là phân giác ABC)
=>AD/HI=CD/AD=>AD^2=HI.CD
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)
cho t.giác ABC vuông tại A ( AB < AC ), đường cao AH (H thuộc BC), trên tia HC lấy điểm K sao cho HK = AH. đường thẳng vuông góc với BC tại K cắt AC tại I
a) c.minh t.giác IKC đồng dạng vs t.giác BAC.
b)c.minh góc AKC = góc BIC.
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. chứng minh BD\DC = HK\HC.
a : xét tg ABD và tg ACE có :
góc A chung
góc BAD = góc CEA (=90 độ)
ngoặc 2 dòng trên suy ra tg ABD đồng dạng vs tg ACE (g.g)
a)Xét tg AHE. BHD có:
góc E=D=90¤
ggóc AHE=BHD (2 góc đối đỉnh)
suy ra 2 t giác đồng dạng
à thanks mình xin lỗi nhé !
a, Xét tam giác HAC và tam giác ABC ta có
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1)
\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3)
Xét tam giác HAB và tam giác ABC ta có :
^AHB = ^BAC = 900
^B _ chung
Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)
Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB
b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )
\(\Rightarrow HA=\frac{15.20}{25}=12\)cm
a B C d E f a)t giác ABE đồng dạng với t giác ACF:
+) \(\widehat{AEB}=\widehat{AFC}=90\)độ
+) \(\widehat{BAE}=\widehat{CAF}\)
vậy t giác ABE đồng dạng với t giác ACF ( g.g)
b)t giác CFD đồng dạng với t giác BED:
+) \(\widehat{CFD}=\widehat{BED}=90\)độ
+) \(\widehat{BDE}=\widehat{CDF}\)(đối đỉnh)
vậy t giác CFD đồng dạng với t giác BED ( g.g)
suy ra: \(\frac{DC}{BD}=\frac{DF}{DE}\)hay DB.DF=DC.DE
c) vì t giác ABE đồng dạng với t giác ACF(câu a)
suy ra \(\frac{AE}{ÀF}=\frac{BE}{CF}\)(1)
vì t giác CFD đồng dạng với BED
suy ra \(\frac{DB}{DC}=\frac{BE}{CF}\)(2)
từ 1,2 suy ra \(\frac{AE}{ÀF}=\frac{DB}{DC}\)hay DB.AF=DC.AE
( k mình nha )
A B C H M N
a, Xét \(\Delta AMH\&\Delta AHB\)có
\(AMH=AHB=90^o\)
\(MAH=HAB\) (Góc chung)
\(\Rightarrow\Delta AMH~\Delta AHB\left(g.g\right)\)
b , Xét \(\Delta ANH\&\Delta AHC\)có
\(ANH=AHC=90^O\)
\(NAH=HAC\) (Góc chung)
\(\Delta ANH~\Delta AHC\left(g.g\right)\)
\(\Rightarrow\frac{AN}{AH}=\frac{AH}{AC}\Rightarrow AN.AC=AH^2\)