Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB(=90)
góc B chung
=>tam giác ABC đồng dạng vs t.giác HBA(gg)
b)CMTT có tam giác ABC đồng dạng t.giác HAC
=>t.giác HBA đồng dạng t.giác HAC
=>AH/BH=HC/AH
=>AH^2=BH.CH
c)+)xét tam giác BAD và tam giác BHI có:
BAD=BHI=90
ABD=HBI(BD là phân giác ABC)
=>T.giác BAD đồng dạng vs tam giac BHI(g.g)
=>AB/BH=AD/HI (1)
+)Tam giác ABC đồng dạng tam giac HBA ( CMT)
=>AB/BH=BC/AB (2)
+)(1);(2)=>AD/HI=BC/AB
Mà có CD/AD=BC/AB(BD là phân giác ABC)
=>AD/HI=CD/AD=>AD^2=HI.CD
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
cho t.giác ABC vuông tại A ( AB < AC ), đường cao AH (H thuộc BC), trên tia HC lấy điểm K sao cho HK = AH. đường thẳng vuông góc với BC tại K cắt AC tại I
a) c.minh t.giác IKC đồng dạng vs t.giác BAC.
b)c.minh góc AKC = góc BIC.
c) gọi M là trung điểm của đoạn thẳng BI, tia AM cắt BC tại D. chứng minh BD\DC = HK\HC.
a) Vì \(\Delta ABC\) vuông tại A (giả thiết).
\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).
\(\Rightarrow6^2+8^2=BC^2\)(thay số).
\(\Rightarrow BC^2=36+64=100\)
\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)
Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)