Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
Xét ABD, ta có :
MA = MB (gt)
QA = QD (gt)
=> MQ là đường trung bình.
=> MQ // BD và MQ = BD : 2 (1)
Cmtt, ta được :
NP // BD và NP = BD : 2 (2)
NM // AC và NM = AC : 2 (3)
Từ (1) và (2) : MQ // NP và MQ = PP
=> Tứ giác MNPQ làhình bình hành.
ta có :
AC = BD ( hai đường chéo hình thang cân ABCD)
NM = AC : 2 (cmt)
MQ = BD : 2 (cmt)
=> NM = MQ
Xét hình bình hành MNPQ, ta có :
NM = MQ (cmt)
=> hình bình hành MNPQ là hình thoi.
b , Nếu AC BD
NM // AC (cmt)
NP // BD (cmt)
=> NM NP tại N
Hay
Xét hình thoi MNPQ , ta có : (cmt)
=> hình thoi MNPQ là hình vuông.
tick nha bn
cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.
a) tứ giác MNPQ là hình gì ? vì sao?
MN//BD; PQ//BD
NP//AC; QM//AC
=>MN//PQNP//QNMNPQ la hbbh
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔDAC có DP/DC=DQ/DA
nên PQ//AC và PQ=AC/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
a) Ta có : \(AD=BC\left(gt\right)\)
=> ABCD là hình thang cân ( 2 cạnh bên = nhau )
b) Để MNPQ là hình chữ nhật thì \(\widehat{P}_1=90^o\)
Vì ABCD là hình thang cân ( câu a )
\(\Rightarrow AB//CD\)
Gọi I , K là 2 điểm nối từ A , B đến cạnh CD và vuông góc với CD
\(\Rightarrow AI//BK\) ( cùng vuông góc với CD )
Ta lại có : \(\widehat{P}_1=\widehat{K}\)( đ.vị ) (1)
Mà \(\widehat{K}=90^o\left(gt\right)\) (2)
Từ (1) và (2) \(\Rightarrow MNPQ\)là hình chữ nhật ( có góc = 90 độ )
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔDBC có
Q là trung điểm của BD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔDBC
Suy ra: QP//BC và \(QP=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành