Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét 4 số: a1; a2; a3; a4; 4 số này khi chia cho 3 chỉ có thể dư 0; 1; 2. Có 4 số mà chỉ có 3 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 3, hiệu của chúng chia hết cho 3
- Tương tự xét 4 số a2; a3; a4; a5 và => 4 số này tạo ra ít nhất 1 hiệu chia hết cho 3
Từ 2 điều trên => D chia hết cho 9 (1)
Có 5 số nguyên mà chỉ có 2 loại số lẻ và chẵn nên theo nguyên lí Đi rich let có ít nhất 3 số cùng lẻ (chẵn)
- Nếu cả 5 số đó cùng chẵn hoặc cùng lẻ ta dễ dàng => D chia hết cho 32
- + Nếu trong 5 số, có 1 số lẻ, 4 số chẵn, không mất tính tổng quát ta giả sử 4 số đó là a1; a2; a3; a4, dễ dàng => D chia hết cho 32
+ Nếu trong 5 số, có 1 số chẵn, 4 số lẻ tương tự như trên cũng => D chia hết cho 32
- + Nếu trong 5 số, có 3 số chẵn, 2 số lẻ ; 3 số chẵn này khi chia cho 4 chỉ có thể dư 0 hoặc 2. Có 3 số mà chỉ có 2 loại số dư nên theo nguyên lí Đi rich let có ít nhất 2 số cùng dư khi chia cho 4, hiệu của chúng chia hết cho 4 cộng với 3 hiệu còn lại chia hết cho 2 tạo bởi 3 số chẵn (trừ trường hợp trên) và 2 số lẻ cũng => D chia hết cho 32
+ Xét tương tự với trường hợp trong 5 số có 3 số lẻ, 2 số chẵn
Vậy trong các trường hợp ta luôn được D chia hết cho 32 (2)
Từ (1) và (2), do (9;32)=1 => D chia hết cho 288 (đpcm)
1.
h(x)=x(x-1)+1=x2-x+1
Cho h(x)=0=>x2-x+1=0<=>\(\left(x^2-\dfrac{1}{2}x\right)-\left(\dfrac{1}{2}x-\dfrac{1}{4}\right)+\dfrac{3}{4}=0\)
<=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=>PTVN
2.
(x-1).f(x)=(x+4).f(x+8)
*)Với x=1 ta có:
0.f(1)=5.f(9)
<=>5.f(9)=0
=>x=9 là 1 nghiệm của f(x)
*)với x=-4 ta có:
-5.f(-4)=0.f(4)
=>-5.f(-4)=0
=>x=-4 là 1 nghiệm của f(x)
Vậy f(x) có ít nhất 2 nghiệm là x=-4 và x=9