Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)
khi đó, ta có: (x - z)3 = (2012k - 2014k)3 = (-2k)3 = -8k3
8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3
=> (x - z)3 = 8(x - y)2(y - z)
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Giải :
Đặt \(\frac{x}{2013}=\frac{y}{2014}=\frac{z}{2015}=k\Rightarrow\hept{\begin{cases}x=2013k\\y=2014k\\z=2015k\end{cases}}\)
Khi đó, ta có : 4(2013k - 2014k)(2014k - 2015k) = 4. (-k).(-k) = 4.k2 (1)
(2015k - 2013k)2 = (2k)2 = 22.k2 = 4k2 (2)
Từ (1) và (2) suy ta 4(x - y)(y - z) = (z - x)2
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}\)
Ta có:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{xa^2}{a^3}=\frac{yb^2}{b^3}=\frac{zc^2}{c^3}=\frac{a^2x+b^2y+c^2z}{a^3+b^3+c^3}\)
Ta có\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^3}{a^2x}=\frac{y^3}{b^2y}=\frac{z^3}{c^2z}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\)
\(A=\frac{\left(x^3+y^3+z^3\right)\left(a^3+b^3+c^3\right)\left(a+b+c\right)}{\left(x+y+z\right)\left(a^2x+b^2y+c^2z\right)^2}=\frac{x^3+y^3+z^3}{a^2x+b^2y+c^2z}\cdot\frac{a^3+b^3+c^3}{a^2x+b^2y+c^2z}\cdot\frac{a+b+c}{x+y+z}\)
\(=\frac{x^2}{a^2}\cdot\frac{a}{x}\cdot\frac{a}{x}\)=1