Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{6+3}{12-5}=\frac{9}{7}\)
\(\frac{3sina-2cosa}{5sina+4cos^3a}=\frac{\frac{3sina}{cosa}-\frac{2cosa}{cosa}}{\frac{5sina}{cosa}+\frac{4cos^3a}{cosa}}=\frac{3tana-2}{5tana+4cos^2a}=\frac{3tana-2}{5tana+\frac{4}{1+tan^2a}}=\frac{9-2}{15+\frac{4}{10}}=\frac{5}{11}\)
\(3sin^4x-\left(1-sin^2x\right)^2=\frac{1}{2}\Leftrightarrow3sin^4x-\left(sin^4x-2sin^2x+1\right)=\frac{1}{2}\)
\(\Leftrightarrow2sin^4x+2sin^2x-\frac{3}{2}=0\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\\sin^2x=-\frac{3}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow cos^2x=1-\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow B=\left(\frac{1}{2}\right)^2+3\left(\frac{1}{2}\right)^2=1\)
\(4sin^4x+3\left(1-sin^2x\right)^2=\frac{7}{4}\Leftrightarrow4sin^4x+3\left(sin^4x-2sin^2x+1\right)=\frac{7}{4}\)
\(\Leftrightarrow7sin^4x-6sin^2x+\frac{5}{4}=0\Rightarrow\left[{}\begin{matrix}sin^2x=\frac{1}{2}\Rightarrow cos^2x=\frac{1}{2}\\sin^2x=\frac{5}{14}\Rightarrow cos^2x=\frac{9}{14}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}C=3\left(\frac{1}{2}\right)^2+4\left(\frac{1}{2}\right)^2=\frac{7}{4}\\C=3\left(\frac{5}{14}\right)^2+4\left(\frac{9}{14}\right)^2=\frac{57}{28}\end{matrix}\right.\)
Ta có: \(tan\alpha=2\Leftrightarrow\dfrac{sin\alpha}{cos\alpha}=2\Leftrightarrow sin\alpha=2cos\alpha\)
A = \(\dfrac{16cos^2\alpha+6cos^2\alpha}{20cos^2\alpha-2cos^2\alpha}=\dfrac{22cos^2\alpha}{18cos^2\alpha}=\dfrac{11}{9}\)
\(A=\frac{\frac{sina}{cos^3a}-\frac{cosa}{cos^3a}}{tan^3a+3+\frac{2sina}{cos^3a}}=\frac{tana.\frac{1}{cos^2a}-\frac{1}{cos^2a}}{tan^3a+3+2tana.\frac{1}{cos^2a}}\)
\(=\frac{tana\left(1+tan^2a\right)-\left(1+tan^2a\right)}{tan^3a+3+2tana\left(1+tan^2a\right)}=\frac{3\left(1+9\right)-\left(1+9\right)}{27+3+2.3.\left(1+9\right)}=...\)
\(\dfrac{3sin\alpha-4cos\alpha}{2sin\alpha+3cos\alpha}=\dfrac{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}+\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{3tan\alpha-4}{2tan\alpha+3}\)
Biết tanα=\(-\dfrac{1}{4}\) nên ta có:
\(\dfrac{3\cdot\dfrac{-1}{4}-4}{2\cdot\dfrac{-1}{4}+3}=\dfrac{-\dfrac{3}{4}-4}{-\dfrac{1}{2}+3}=\dfrac{-19}{10}\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
\(A=\dfrac{\dfrac{4sin\alpha}{sin\alpha}+\dfrac{5cos\alpha}{sin\alpha}}{\dfrac{2sin\alpha}{sin\alpha}-\dfrac{3cos\alpha}{sin\alpha}}\)
\(A=\dfrac{4+5cot\alpha}{2-3cot\alpha}\)
Biết cotα=\(\dfrac{1}{2}\) nên ta có:
\(A=\dfrac{4+5\cdot\dfrac{1}{2}}{2-3\cdot\dfrac{1}{2}}\)
\(A=\dfrac{4+\dfrac{5}{2}}{2-\dfrac{3}{2}}\)
A= 13
\(A=cot^2x+tan^2x+2-\left(cot^2x+tan^2x-2\right)=4\)
\(B=cos^2x.cot^2x-cot^2x+cos^2x+2\left(sin^2x+cos^2x\right)\)
\(=cot^2x\left(cos^2x-1\right)+cos^2x+2\)
\(=-cot^2x.sin^2x+cos^2x+2\)
\(=-cos^2x+cos^2x+2=2\)
\(C=\left(sin^4x+cos^4x\right)^2+4sin^4x.cos^4x+4sin^2xcos^2x\left(sin^4x+cos^4x\right)+1\)
\(=\left(sin^4x+cos^4x+2sin^2x.cos^2x\right)^2+1\)
\(=\left(sin^2x+cos^2x\right)^4+1\)
\(=1^4+1=2\)
\(tanx=3\) \(\Leftrightarrow sinx=3cosx\)
\(A=\dfrac{2.3.cosx-3cosx}{4cosx+5.3cosx}=\dfrac{3cosx}{19cosx}=\dfrac{3}{19}\)
\(B=\dfrac{sin^2x-4sinxcosx+3cos^2x}{5-2sin^2x}\)
\(=\dfrac{\left(3cosx\right)^2-4.3cosx.cosx+3cos^2x}{5-2\left(3cosx\right)^2}\)
\(=\dfrac{9cos^2x-12cos^2x+3cos^2x}{5-18cos^2x}=0\)