giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các...
Đọc tiếp
giải giúp mk vs mk sắp thi rùi!!!
1. a. Cho P=√x√xy+√x+3+√y√yz+√y+1+3√z√xz+3√z+3xxy+x+3+yyz+y+1+3zxz+3z+3 và xyz =9.
Tính √10P−110P−1
b. Cho x,y,z >0 thỏa mãn: x+y+z + √xyzxyz =4 .
Tính B= √x(4−y)(4−z)+√y(4−z)(4−x)+√z(4−x(4−y))x(4−y)(4−z)+y(4−z)(4−x)+z(4−x(4−y))
2. a. giải phương trình x2(x+2)2+3=3x2−6xx2(x+2)2+3=3x2−6x
b. {x2+y2+xy+1=2xx(x+y)2+x−2=2y2{x2+y2+xy+1=2xx(x+y)2+x−2=2y2
3. a.Tìm tất cả các nghiệm nguyên của phương trình x2+x+2y2+y=2xy2+xy+3x2+x+2y2+y=2xy2+xy+3
b. CMR: a31+a32+a33+....+a3na13+a23+a33+....+an3 chia hết cho 3 biết a1,a2,a3,...,ana1,a2,a3,...,an là các chữ số của 2019201820192018
4. Cho tam giác MNP có 3 góc M, N, P nhọn, nội tiếp đường tròn tâm O bán kính R. Gọi Q là trung điểm của NP và các đường cao MD, NE, PF của tam giác MNP cắt nhau tại H.
a. MH =2OQ
b. Nếu MN+MP = 2NP thì sin N+ sin P = 2sinM
c. ME.FH +MF .HE = R2√2R22 biết NP = R√2R2
5. Cho a,b,c dương thỏa mãn 1ab+1bc+1ca=31ab+1bc+1ca=3 . Tìm GTNN của P= ab2a+b+bc2b+c+ca2c+a
Ta có:
\(cot\alpha\cdot tan\alpha=1\)
\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}\)
\(\Rightarrow cota=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
Mà:
\(cot^2\alpha+1=\dfrac{1}{sin^2\alpha}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{1}{cot^2\alpha+1}}\)
\(\Rightarrow sin\alpha=\sqrt{\dfrac{1}{\left(\dfrac{4}{3}\right)^2+1}}=\dfrac{3}{5}\)
Lại có:
\(cos^2\alpha+sin^2\alpha=1\)
\(\Rightarrow cos\alpha=\sqrt{1-sin^2a}\)
\(\Rightarrow cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(tan\alpha=\dfrac{3}{4}\\ \Rightarrow cot\alpha=1:\dfrac{3}{4}=\dfrac{4}{3}\)
Có:
\(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\\ \Rightarrow sin\alpha=\sqrt{1:\left(1+\left(\dfrac{4}{3}\right)^2\right)}=\dfrac{3}{5}\)
\(\Rightarrow cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)