K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

a)   Xét   \(\Delta MNH\)và     \(\Delta MPH\)có:

       \(MN=MP\)(gt)

      \(\widehat{MNH}=\widehat{MPH}\)(gt)

      \(NH=PH\)(gt)

suy ra:   \(\Delta MNH=\Delta MPH\)(c.g.c)

b)   \(\Delta MNH=\Delta MPH\)

\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}\)

mà    \(\widehat{MHN}+\widehat{MHP}=180^0\)(kề bù)

\(\Rightarrow\)\(\widehat{MHN}=\widehat{MHP}=90^0\)

\(\Rightarrow\)\(MH\)\(\perp\)\(NP\)

7 tháng 2 2018

a,  Xét tam giác MNH và tam giác MPH có

    MN=MP(gt)

    NH=PH(gt)

    MH chung

=> tam giác MNH=tam giác MPH (c.c.c)

b, Từ a : tam giác MNH = tam giác MPH => góc MHN =góc MHP

Mà góc MHN+góc MHP=180 độ (kề bù)=> Góc MNH=góc MHP =180:2=90 độ 

=> MH vuông góc với NP

9 tháng 4 2017

a) xét tam giác MHN và tam giác MHP có

         \(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)

         MN = MP ( tam giác MNP cân tại M)

         MH chung

=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)

b) vì tam giác MHN = tam giác MHP (câu a)

=> \(\widehat{M1}\)\(\widehat{M2}\)(2 góc tương ứng)

=> MH là tia phân giác của \(\widehat{NMP}\)

9 tháng 4 2017

bạn tự vẽ hình nhé

a.

vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)

Xét tam giác MHN và tam giác MHP

có: MN-MP(CMT)

 \(\widehat{N}\)=\(\widehat{P}\)(CMT)

MH là cạnh chung

\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)

=> Tam giác MHN= Tam giác MHP(ch-gn)

=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG)          (1)

và NH=PH( 2 cạnh tương ứng)

mà H THUỘC NP=> NH=PH=1/2NP                               (3)

b. Vì H năm giữa N,P

=> MH nằm giữa MN và MP                                           (2)

Từ (1) (2)=> MH là tia phân giác của góc NMP

c. Từ (3)=> NH=PH=1/2.12=6(cm)

Xét tam giác MNH có Góc H=90 độ

=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)

hay \(10^2=6^2+MH^2\)

=>\(MH^2=10^2-6^2\)

\(MH^2=64\)

=>MH=8(cm)

28 tháng 3 2022

có M

28 tháng 3 2022

chưa hỉu cái đề lắm

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

28 tháng 2 2020

a, xét tma giác MNE và tam giác MPE có :

MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)

NE = EP do E là trđ của NP (gt)

=> tam giác MNE = tam giác MPE (c-g-c)

=> góc MEN = góc MEP (đn)

mà góc MEN + góc MEP = 180 (kb)

=> góc MEN = 90

=> MN _|_ NP và có M là trđ của PN (Gt)

=> ME là trung trực của NP (đn)

b, xét tam giác MKE và tam giác MHE có : ME chung

góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)

góc MKE = góc MHE = 90

=> tam giác MKE = tam giác MHE (ch-cgv)

=> MK = MH (đn)

=> tam giác MHK cân tại M (đn)

=> góc MKH = (180 - góc NMP) : 2 (tc)

tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)

=> góc MKH = góc MNP mà 2 góc này đồng vị

=> KH // NP (đl)

Xét ΔMNK có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMNK cân tại M