K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

a) tam giác MNP có MN=MP(GT) suy ra tam giác MNP cân tại M (ĐỊNH nghĩa tam giác cân)

b) xét tam giác MNI và MPI có 

    MI chung 

    MN=MP(GT)

    IN=IP(MI là trung tuyến nên I là trung điểm NP)

SUY ra tam giác MNI=MPI(C-C-C)

c) Vì tam giác MNP cân tại M(cmt)màMI là đường trung tuyến nên MI đồng thời cũng là đường cao đường trung trực hay MI là đường trung trực của NP (tính chất tam giác cân)

d)Vì MI là đường cao tam giác MNP(cmt) suy ra MI vuông góc với NP suy ra tam giác MNI vuông tại I

   Vì MI là đường trung tuyến nên I là trung điểm NP suy ra NI=1/2NP

    Mà NP=12cm(gt) suy ra NI=12x1/2=6cm

   xét tam giác vuông MNI có

    NM2=NI2+MI2(ĐỊNH LÍ Py-ta-go)

   Suy ra MI2=NM2-NI2

 mà NM=10CM(gt) NI=6CM(cmt)

suy ra MI2=102-62=100-36=64=căn bậc 2 của 64=8

mà MI>0 Suy ra MI=8CM (đpcm)

ế) mik gửi cho bn bằng này nhé 

12 tháng 5 2017

a) Vì MN=MP => tam giác MNP là tam giác cân tại M.

b)Xét tam giác MIN và tam giác MIP có:

           MN=MP (vì tam giác MNP cân)

           \(\widehat{MNP}=\widehat{MPI}\)(tam giác MNP cân)

            NI=PI(vì MI là trung tuyến)

=> tam giác MIN=tam giác MIP(c.g.c)

c) Ta có: MN=MP

              IN=IP

=> M,I thuộc trung trực của NP

Hay MI là đường trung trực của NP

d) IN=IP=NP/2=12/2=6(cm)

Xét tam giác MIN có góc MIN =90*

 =>  MN^2=MI^2 + NI^2

 =>  MI^2=MN^2-NI^2

 =>  MN^2 = 10^2 - 6^2

 =>  MN = 8

e) Tam giác HEI có goc IHE=90*

 => góc HEI + góc HIE= 90*

Mà góc HIE = góc MEF/2

 => góc MEF/2 + góc HEI = 90*   (1)

Mà góc MEF + góc HEI + góc IEF = 180*

 => góc MEF/2 + góc IEF = 90*     (2)

  Từ (1) và (2)   =>  góc HEI = góc IEF

Hay EI là tia phân giác của góc HEF

a: Xét ΔMNI và ΔMPI có 

MN=MP

NI=PI

MI chung

Do đó: ΔMNI=ΔMPI

Ta có: ΔMNP cân tại M

mà MI là đường trung tuyến

nên MI là đường cao

b: Xét tứ giác MNQP có

I là trung điểm của MQ

I là trung điểm của NP

Do đó: MNQP là hình bình hành

Suy ra: MN//PQ

c: Xét tứ giác MEQF có 

ME//QF

ME=QF

Do đó: MEQF là hình bình hành

Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của MQ

nên I là trung điểm của FE

hay E,I,F thẳng hàng

25 tháng 11 2016

a) vì tam giác MNPcó MN=MP=> tam giác MNP cân tại M mà MI là đường trung tuyến nên MI cũng là đường phân giác

xét tam giác MNI=tam giác MPI (cgc)

b) Theo câu a tam giác MNP= tam giác MPI =>góc MIN = góc MIP

Ta lại có MIN+MIP=180 độ=>MIN=MIP=90 độ=>MI vuông góc với NP

25 tháng 11 2016

a) VÌ TAM GIÁC MNP CÓ MN=MP=>TAM GIÁC MNP CÂN TẠI M=>ĐƯỜNG TRUNG TUYẾN MI CŨNG LÀ ĐƯỜNG PHÂN GIÁC

XÉT TAM GIÁC MNI VÀ TAM GIÁC MPI CÓ

MN=MP

NMI=PMI

MI CHUNG

=> TAM GIÁC MNI = TAM GIÁC MPI (CGC)

b) THEO CÂU a:TAM GIÁC MNI=TAM GIÁC MPI=>GÓC MIN=GÓC MIP

MÀ MIN+MIP=180độ=>MIN=MIP=90 độ=>MI vuông góc với NP

28 tháng 2 2020

a, xét tma giác MNE và tam giác MPE có :

MN = MP và góc MNE = góc MPE do tam giác MNP cân tại M (Gt)

NE = EP do E là trđ của NP (gt)

=> tam giác MNE = tam giác MPE (c-g-c)

=> góc MEN = góc MEP (đn)

mà góc MEN + góc MEP = 180 (kb)

=> góc MEN = 90

=> MN _|_ NP và có M là trđ của PN (Gt)

=> ME là trung trực của NP (đn)

b, xét tam giác MKE và tam giác MHE có : ME chung

góc NME = góc PME do tam giác MNE = tam giác MPE (Câu a)

góc MKE = góc MHE = 90

=> tam giác MKE = tam giác MHE (ch-cgv)

=> MK = MH (đn)

=> tam giác MHK cân tại M (đn)

=> góc MKH = (180 - góc NMP) : 2 (tc)

tam giác MNP cân tại M (Gt) => góc MNP = (180 - góc NMP) : 2 (tc)

=> góc MKH = góc MNP mà 2 góc này đồng vị

=> KH // NP (đl)