K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2020

Giúp mk câu dưới nx nha bạn

NV
13 tháng 5 2020

Chỉ đúng với \(x;y;z\in R^+\)

Nói chung là ta cần chứng minh

\(x^2+y^2+z^2\ge2xycosC+2zxcosB+2yzcosA\)

\(\Leftrightarrow x^2-2x\left(ycosC+zcosB\right)+y^2+z^2-2yzcosA\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2-\left(ycosC+zcosB\right)^2+y^2+z^2-2yzcosA\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2-y^2cos^2C-z^2cos^2B+y^2+z^2-2yz\left(cosB.cosC+cosA\right)\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+y^2\left(1-cos^2C\right)+z^2\left(1-cos^2B\right)-2yz\left(cosB.cosC-cos\left(B+C\right)\right)\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+y^2sin^2C+z^2.sin^2B-2yz.sinB.sinC\ge0\)

\(\Leftrightarrow\left(x-ycosC-zcosB\right)^2+\left(ysinC-zsinB\right)^2\ge0\) (luôn đúng)

17 tháng 8 2019

\(VT=\sum\frac{2}{x^2+y^2}=\sum\frac{x^2+y^2+z^2}{x^2+y^2}=\sum\left(1+\frac{z^2}{x^2+y^2}\right)\ge\sum\left(1+\frac{z^2}{2xy}\right)=3+\frac{x^3+y^3+z^3}{2xyz}\)

Vậy đẳng thức đã được chứng minh . Dấu "=" xảy ra khi \(x=y=z=\sqrt{\frac{3}{2}}\)

NV
15 tháng 6 2020

\(cosA+cosB-cosC=2cos\frac{A+B}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}.cos\frac{A-B}{2}+2sin^2\frac{C}{2}-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)-1\)

\(=2sin\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)-1\)

\(=4cos\frac{A}{2}cos\frac{B}{2}sin\frac{C}{2}-1\)

13 tháng 2 2020

1) \(\left\{{}\begin{matrix}b+c-a=x\\c+a-b=y\\a+b-c=z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

BĐT cần cm trở thành:

\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\ge3\)

Theo AM-GM, VT>=6/2=3

Dấu bằng xảy ra khi a=b=c

2)\(x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x^2\sqrt{\frac{1}{x}}=2x\sqrt{x}\)

=>\(P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\left\{{}\begin{matrix}x\sqrt{x}=a\\y\sqrt{y}=b\\z\sqrt{z}=c\end{matrix}\right.\Rightarrow abc=1\)

=>\(P\ge\frac{2a}{b+2c}+\frac{2b}{c+2a}+\frac{2c}{a+2b}\ge2.1=2\)

(Dùng Cauchy-Schwartz chứng minh được:

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge1\))

Dấu bằng xảy ra khi a=b=c=1 <=> x=y=z=1

Vậy minP=2<=>x=y=z=1

19 tháng 8 2020

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

10 tháng 1 2020

Cho mình hỏi đề có thiếu gì khôg vậy

11 tháng 4 2016

Áp dụng bất đăng thức Cauchy : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{3}{\sqrt[3]{xyz}}\)

Nên \(P\ge\frac{3}{\sqrt[3]{xyz}}+2xyz\). Đẳng thức khi : x=y=z

Đặt \(t=\sqrt[3]{xyz}\)

Cũng theo Cauchy : \(1=x^2+y^2+z^2\ge3\sqrt{x^2y^2z^2}\). Đẳng thức khi x=y=z

Nên ta có 0<t\(\le\frac{\sqrt{3}}{3}\)

Xét hàm số \(f\left(t\right)=\frac{3}{t}+2t^3\) với  0<t\(\le\frac{\sqrt{3}}{3}\)

Tính \(f'\left(t\right)=-\frac{3}{t^2}+6t^2=\frac{3\left(2t^2-1\right)}{t^2}\)

Lập bảng biến thiên của f(t) rồi chỉ ra : \(f\left(t\right)\ge\frac{29\sqrt{3}}{9}\) với mọi t\(\in\left(0;\frac{\sqrt{3}}{3}\right)\)

Từ đó \(P\ge\frac{29\sqrt{3}}{9}\)

Giá trị nhỏ nhất của P là \(\frac{29\sqrt{3}}{9}\) đạt được khi \(x=y=z=\frac{\sqrt{3}}{3}\)

 
10 tháng 12 2017

cd đúng ko

2 tháng 12 2019

đề có nhầm lẫn gì không bạn?

2 tháng 12 2019

áp dụng bđt cosi có:
\(\left\{{}\begin{matrix}x^3+y^2\ge2xy\sqrt{x}\\y^3+z^2\ge2yz\sqrt{y}\\z^3+x^2\ge2zx\sqrt{z}\end{matrix}\right.\)

\(\Rightarrow VT\le\frac{2\sqrt{x}}{2xy\sqrt{x}}+\frac{2\sqrt{y}}{2yz\sqrt{y}}+\frac{2\sqrt{z}}{2zx\sqrt{z}}=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

Ta cần cm: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(\Rightarrow xy+yz+zx\ge x^2+y^2+z^2\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\le0\)(sai)

=> đề sai