K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H co

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: Xét ΔBAD vuông tại A và ΔBHI vuông tạiH có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA*BI=BD*BH

c: góc AID=góc BIH=90 độ-góc HBI

góc ADI=90 độ-góc ABD

mà góc HBI=góc ABD

nên góc AID=góc ADI

=>ΔADI cân tại A

d: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

1 tháng 5 2022

a/ Xét tg vuông BAC và tg vuông BHA có

\(\widehat{ACB}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg BAC đồng dạng với tg BHA (g.g.g)

b/ Xét tg vuông BAC có

\(BC=\sqrt{AB^2+AC^2}\) (Pitago) \(\Rightarrow BC=\sqrt{6^2+8^2}=10cm\)

\(AB^2=HB.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)

\(\Rightarrow HC=BC-HB=10-3,6=6,4cm\)

\(AH^2=HB.HC\) (Trong tg vuông bình phương đường cạo hạ từ đỉnh góc vuông bằng tích giữa hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH^2=3,6.6,4=23,04\Rightarrow AH=4,8cm\)

c/

Xét tg vuông HBM và tg vuông ABD có

\(\widehat{HBM}=\widehat{ABD}\left(gt\right)\) => tg HBM đồng dạng với tg ABD (g.g.g)

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{HM}{AD}\Rightarrow\dfrac{AD}{AB}=\dfrac{HM}{HB}\) (1)

Xét tg vuông ABC có BD là phân giác \(\widehat{B}\)

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (2)

Xét tg ABH có BM là phân giác \(\widehat{B}\)

\(\Rightarrow\dfrac{HM}{HB}=\dfrac{AM}{AB}\) (T/c đường phân giác: Trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đợn thẳng tỷ lệ với hai cạnh kề hai đoạn thẳng đó) (3)

Từ (1) (2) (3) \(\Rightarrow\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{HM}{HB}=\dfrac{AM}{AB}\)

\(\Rightarrow\dfrac{AD}{AB}.\dfrac{AM}{AB}=\dfrac{CD}{BC}.\dfrac{HM}{HB}\)

 Mà \(HB.BC=AB^2\) (cmt)

\(\Rightarrow\dfrac{AD.AM}{AB^2}=\dfrac{HM.CD}{AB^2}\Rightarrow AM.AD=HM.CD\)

\(\Rightarrow AM.AD-HM.CD=0\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)

mà DA+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: DA=3cm; DC=5cm

3:

a: AE/AD=9/6=3/2

AD/AC=6/12=1/2

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng vơi ΔABC

c: IB/IC=AB/AC=AD/AE

=>IB*AE=IC*AD

14 tháng 3 2023

cảm ơn bạn

17 tháng 3 2023

Ai giúp tui đi cho 5 sao

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AD/DC=BA/BC=6/10=3/5

b: Xét ΔHBA vuông tạiH và ΔABC vuôg tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

màgóc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: BC=25cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

a: BC=25cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

NV
28 tháng 3 2023

a.

Xét hai tam giác BAC và BHA có:

\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)

b.

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)

\(CH=BC-BH=\dfrac{16}{5}\)

c.

Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:

\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)

Áp dụng định lý phân  giác cho tam giác ABH:

\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)

Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)

NV
28 tháng 3 2023

loading...

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{6}=\dfrac{CD}{10}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)

=>\(AD=3\cdot1=3\left(cm\right);DC=5\cdot1=5\left(cm\right)\)

b: Xét ΔBAH có BI là phân giác

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc ABH chung

Do đó: ΔBHA~ΔBAC

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

\(\widehat{ABD}=\widehat{HBI}\)

Do đó: ΔBAD~ΔBHI

=>\(\dfrac{BA}{BH}=\dfrac{BD}{BI}\)

=>\(BA\cdot BI=BD\cdot BH\)

Ta có: ΔBAD~ΔBHI

=>\(\widehat{BDA}=\widehat{BIH}\)

mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A