Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình tự vẽ bn nha a) ta có:tam giác abc vuông tại a => bac = 90 xét tam giác abc có: abc + acb + cab = 180(t/c) mà bac = 90(cmt) ; acb = 36(gt) => 90 +36 + abc = 180 126 + abc = 180 abc= 54
b) ta có: abd = ebd ( vì bd là phân giác của abc) xét tam giác abd và tam giác ebd có: ba=be(gt) ; abd=ebd(cmt) : chung cạnh bd => tam giác abd = tam giác ebd ( c.g.c) (đpcm)
c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b tam giác abc vuông tại a(gt) => ab vuông góc với ac ta có: xy vuông góc với ab (gt) ab vuông góc với ac(cmt) => xy song song với ac(t/c) => bak = abd ( so le trong) xét tam giác abk vuông tại b và tam giác bad vuông tại a có: bak=abd(cmt) ; chung cạnh ba => tam giác abk= tam giác abd ( cgv-gnk) => ak=bd(2 cạnh tương ứng)
Kí hiệu tam giác là t/g nhé
a) t/g ABC vuông tại A có: ACB + ABC = 90o
=> 36o + ABC = 90o
=> ABC = 90o - 36o = 54o
b) Xét t/g ABD và t/g EBD có:
AB = BE (gt)
ABD = EBD ( vì BD là phân giác của ABE)
BD là cạnh chung
Do đó, t/g ABD = t/g EBD (c.g.c) (đpcm)
c) Xét t/g ABD vuông tại A và t/g BAK vuông tại B có:
ABD = BAK (so le trong)
AB là cạnh chung
Do đó, t/g ABD = t/g BAK ( cạnh góc vuông và góc nhọn kề)
=> BD = AK (2 cạnh tương ứng) (đpcm)
d) Dễ thấy, CA, BH, FE là 3 đường cao của t/g BCF
Do đó 3 đường này cùng đi qua 1 điểm
Mà BH và CA cắt nhau tại D
Nên EF đi qua D
=> E, D, F thẳng hàng (đpcm)
Câu d sai, lm lại
Nối đoạn FD
t/g BAC = t/g BEF ( cạnh góc vuông và góc nhọn kề)
=> BC = BF (2 cạnh tương ứng)
t/g CBD = t/g FBD (c.g.c)
=> CD = FD (...)
t/g CDH = t/g FDH ( cạnh góc vuông và cạnh huyền)
=> CDH = FDH (...)
Có: CDH + CDE + EDB = 180o
Mà CDH = ADB ( đối đỉnh)
= FDH = EDB
Do đó, CDH + CDE + HDF = 180o
=> EDF = 180o
=> E, D, F thẳng hàng (đpcm)
a) Xét \(\Delta ABD\) và \(\Delta EBD\) có:
BD (chung)
\(\widehat{ABD}=\widehat{EBD}\) (BD là tia phân giác \(\widehat{B}\) )
BE = BA (gt)
Do đó: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)
=> AD = ED (hai cạnh tương ứng)
=> \(\Delta ADE\) cân tại D
=> D \(\in\) đường trung trực của cạnh AE (1)
BA = BE (gt)
=> \(\Delta ABE\) cân tại B
=> B \(\in\) đường trung trực của cạnh AE (2)
(1); (2) => BD là đường trung trực của cạnh AE
mà BD và AE cắt nhau tại H
=> BD \(\perp\) AE tại H
ABCDIE12
1) Xét hai tam giác ABI và EBI có:
AB = EB (gt)
B1ˆ=B2ˆ(gt)B1^=B2^(gt)
BI: cạnh chung
Vậy: ΔABI=ΔEBI(c−g−c)ΔABI=ΔEBI(c−g−c)
Suy ra: BAIˆ=BEIˆBAI^=BEI^ (hai góc tương ứng)
Mà BAIˆ=90oBAI^=90o
Do đó: BEIˆ=90oBEI^=90o
2) Xét hai tam giác vuông AID và EIC có:
IA = IE (ΔABI=ΔEBIΔABI=ΔEBI)
AIDˆ=EICˆAID^=EIC^ (đối đỉnh)
Vậy: ΔAID=ΔEIC(cgv−gn)ΔAID=ΔEIC(cgv−gn)
Suy ra: ID = IC (hai cạnh tương ứng)
Do đó: ΔIDCΔIDC cân tại I
3) Ta có: AB = EB (gt)
⇒ΔABE⇒ΔABE cân tại B
⇒⇒ BI là đường phân giác đồng thời là đường trung trực AE
hay BI ⊥⊥ AE (1)
Ta lại có: AB = EB (gt)
AD = EC (ΔAID=ΔEICΔAID=ΔEIC)
=> BD = BC
=> ΔBDCΔBDC cân tại B
=> BI là đường phân giác đồng thời là đường cao của tam giác
hay BI ⊥⊥ DC (2)
Từ (1) và (2) suy ra: AE // DC (đpcm)