K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)

=>AH=6*8/10=4,8

=>MN=4,8

18 tháng 12 2018

xem trên mạng nhé 

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

 

c: góc EMN=góc EMH+góc NMH

=góc EHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (E)

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc EMN=góc EMH+góc NMH

=góc EHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (E)

góc INM=góc INH+góc MNH

=góc IHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (I)

26 tháng 11 2022

a: 

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật

b: \(BC=\sqrt{6^2+8^2}=10\)(cm)

=>AH=6*8/10=4,8(cm)

=>MN=4,8(cm)

c: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>MN là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc BAH+góc HBA=90 độ

=>MN là tiếp tuyến của (K)

a: Xét (I) có

ΔHMB nội tiếp

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét (K) có

ΔCNH nội tiếp

CH là đường kính

=>ΔCNH vuông tại N

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

b: góc NMI=góc NMH+góc IMH

=góc NAH+góc IHM

=góc CAH+góc HCA=90 độ

=>NM là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc BAH+góc B=90 độ

=>MN là tiếp tuyến của (K)

a: Xét (I) có

ΔHMB nội tiếp

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét (K) có

ΔCNH nội tiếp

HC là đường kính

Do đó; ΔCNH vuông tại N

Xét tứ giác AMHN có

góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

b: góc IMN=góc IMH+góc NMH

=góc IHM+góc NAH

=góc HAC+góc HCA=90 độ

=>NM là tiếp tuyến của (I)

góc KNM=góc KNH+góc MNH

=góc KHN+góc MAH

=góc HBA+góc HAB=90 độ

=>MN là tiếp tuyến của (K)

29 tháng 12 2017

A C B H O D E M N

a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)

Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.

Vậy D, O, E thẳng hàng.

b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)

Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.

Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.

Tương tự N là trung điểm HC.

c) Dễ thấy MDEN là hình thang vuông.

Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)

\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)

\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)

26 tháng 11 2022

Xét đường tròn đường kính HB có 

ΔHMB nội tiếp đường tròn

HB là đường kính

Do đó: ΔHMB vuông tại M

Xét đường tròn đường kính HC có 

ΔHNC nội tiếp đường tròn

HC là đường kính

Do đó: ΔHNC vuông tại N

Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

nên AMHN là hình chữ nhật