Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Đường tròn (O)(O), đường kính AHAH có \(\widehat{AMH}\)=90∘
⇒HM⊥ABAMH^=90∘⇒HM⊥AB.
ΔAHBΔAHB vuông tại HH có HM⊥AB
⇒AH2=AB.AMHM⊥AB⇒AH2=AB.AM.
Chứng minh tương tự AH2=AC.ANAH2=AC.AN.
\(\Rightarrow\) AB.AM=AC.ANAB.AM=AC.AN.
B
Theo câu a ta có AB.AM=AC.AN
⇒AMAC=ANABAB.AM=AC.AN⇒AMAC=ANAB.
Tam giác AMNAMN và tam giác ACBACB có \(\widehat{MAN}\)MAN^ chung và AMAC=ANABAMAC=ANAB.
⇒ΔAMN∼ΔACB⇒ΔAMN∼ΔACB (c.g.c).
⇒\(\widehat{AMN}\)=\(\widehat{ACB}\)
c.
Tam giác ABCABC vuông tại AA có II là trung điểm của BC
⇒IA=IB=ICBC⇒IA=IB=IC.
⇒ΔIAC⇒ΔIAC cân tại I
⇒ \(\widehat{IAC}\)= \(\widehat{ICA}\)
Theo câu b ta có \(\widehat{AMN}\)= \(\widehat{ACB}\)
⇒ \(\widehat{IAC}\)= \(\widehat{AMN}\)
Mà \(\widehat{BAD}\)\(+\widehat{IAC}\)=90∘
⇒\(\widehat{BAD}\)+ \(\widehat{AMN}\)
=90∘
\(\Rightarrow\widehat{ADM}\)
=90∘BAD^+IAC^=90∘⇒BAD^+AMN^=90∘⇒ADM^=90∘.
Ta chứng minh ΔABCΔABC vuông tại AA có AH⊥BC
⇒AH2=BH.CHAH⊥BC⇒AH2=BH.CH.
Mà BC=BH+CH
⇒1AD=BH+CHBH.CH
⇒1AD=1HB+1HC.
\(\Rightarrow\) BMNCBMNC là tứ giác nội tiếp.
Sửa đề: BF và CE cắt nhau tại H
a) Xét (O) có
ΔBEC nội tiếp đường tròn(B,E,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBEC vuông tại E(Định lí)
\(\Leftrightarrow CE\perp BE\)
\(\Leftrightarrow CE\perp AB\)
\(\Leftrightarrow\widehat{AEC}=90^0\)
hay \(\widehat{AEH}=90^0\)
Xét (O) có
ΔBFC nội tiếp đường tròn(B,F,C\(\in\)(O))
BC là đường kính(gt)
Do đó: ΔBFC vuông tại F(Định lí)
\(\Leftrightarrow BF\perp CF\)
\(\Leftrightarrow BF\perp AC\)
\(\Leftrightarrow\widehat{AFB}=90^0\)
hay \(\widehat{AFH}=90^0\)
Xét tứ giác AEHF có
\(\widehat{AEH}\) và \(\widehat{AFH}\) là hai góc đối
\(\widehat{AEH}+\widehat{AFH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét ΔABC có
BF là đường cao ứng với cạnh AC(cmt)
CE là đường cao ứng với cạnh AB(cmt)
BF cắt CE tại H(gt)
Do đó: H là trực tâm của ΔABC(Định lí ba đường cao của tam giác)
\(\Leftrightarrow AH\perp BC\)
hay \(AD\perp BC\)(đpcm)
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: AH vuông góc với BC tại D
b:
Xét tứ giác CDFA có góc CDA=góc CFA=90 độ
nên CDFA là tứ giác nội tiếp
=>góc BFD=góc BCA
Xét tứ giác BFEC có góc BFC=góc BEC=90 độ
nên BFEC là tứ giác nội tiếp
=>góc AFE=góc ACB
Ta có: góc COE=180 độ-2 góc C
góc EFD=180 độ-góc AFE-góc BFD
=180 độ-2 góc C
=>góc COE=góc EFD
=>DOEF là tứ giác nội tiếp
A C B H O D E M N
a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)
Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.
Vậy D, O, E thẳng hàng.
b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.
Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.
Tương tự N là trung điểm HC.
c) Dễ thấy MDEN là hình thang vuông.
Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)
\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)
\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)