Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ Nối MA; MD; ME ta có
^DME=^DMA+^CMA (1)
^DMA=90 (góc nội tiếp chắn nửa đường tròn (B)) (2)
^CMA=90 (góc nội tiếp chắn nửa đường tròn (C)) (3)
Từ (1) (2) (3) => ^DME=90 độ => D, M, E thẳng hàng
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc IMN=góc IMH+góc NMH
=góc IHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (I)
góc KNM=góc KNH+góc MNH
=góc KHN+góc MAH
=góc BAH+góc HBA=90 độ
=>MN là tiếp tuyến của (K)
a) Tam giác ABC vuông tại A (gt).
=> A; B; C cùng thuộc đường tròn đường kính BC. (1)
Xét đường tròn đường kính MC:
D \(\in\) đường tròn đường kính MC (gt).
=> \(\widehat{MDC}=90^o\) hay \(\widehat{BDC}=90^o.\)
Tam giác BDC vuông tại D (\(\widehat{BDC}=90^o\)).
=> B; D; C cùng thuộc đường tròn đường kính BC. (2)
Từ (1); (2) => A; B; C; D cùng thuộc đường tròn đường kính BC.
b) Xét tam giác ABC có:
+ O là trung điểm BC (gt).
+ M là trung điểm AC (gt).
=> OM là đường trung bình.
=> OM // AB (Tính chất đường trung bình).
Mà AB \(\perp\) MC (AB \(\perp\) AC).
=> OM \(\perp\) MC.
Xét đường tròn đường kính MC: OM \(\perp\) MC (cmt); M \(\in\) đường tròn đường kính MC (gt).
=> OM là tiếp tuyến.
Ta có : \(AI,IM\) là 2 tiếp tuyến của đường tròn đường kính AB cắt nhau tại I
\(\Rightarrow\text{IA=IM(1)}\)
\(\Rightarrow\text{∆AIM cân tại I}\)
\(\Rightarrow\widehat{MAI}=\widehat{AMI}\)
Ta lại có :
\(\widehat{MAI}+\widehat{ACM}=90^o\)
\(\widehat{AMI}+\widehat{IMC}=90^o\)
\(\Rightarrow\widehat{ACM}=\widehat{IMC}\)
\(\Rightarrow\text{∆ CIM cân tại I}\)
\(\Rightarrow\text{IM=IC(2)}\)
Từ (1),(2)\(\Rightarrow\text{IA=IC}\)
\(AC=\frac{20}{2}=10cm\)