K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

Trong tam giác ABH : 

góc IAH = góc IHB (cùng phụ góc AHI)

Trong tam giác ACH :

góc CAH = góc CHK (cùng phụ góc AHK)

cộng vế với vế :

IAH +CAH = IHB +CHK

90             = IHB + CHK

Suy ra 180 - IHB - CHK = IHK

           180-90             = IHK

               90 = HIK

HI _l_ HK

Tứ giác AIHK có 4 góc vuôn nên AIHK là Hình chữ nhật 

=> IA = HK và IK =AH 

4 tháng 2 2019

tu ke hinh : 

a, xet tamgiac MHB va tamgiac MKC co : HM = MK (gt)

CM = MB do M la trung diem cua BC(gt)

goc HMB = goc KMC (doi dinh)

=> tamgiac MHB = tamgiac MKC  (c - g - c)

xet tamgiac HMC va tamgiac KMB co : HM = MK (gt)

goc HMC = goc KMB (doi dinh)

MC = MB (cmt)

=> tamgiac HMC = tamgiac KMB (c - g - c)

=> goc CHM = goc MKB 

ma goc CHM = 90 do MH | AC (gt)

=> goc MKB = 90 

b, MH | AC (gt)

tamgiac ABC vuong tai A (gt) => AB | AC (dn)

2 duong thang nay phan biet

=> HK // AB (dl)

MH | AB (gt) 

goc MKB = 90 (cau a) => MK | KB 

2 duong thang nay phan biet

=> AC // KB (dl)

goc AHB so le trong HBK 

=> goc AHB = goc HBK (tc)

xet tamgiac AHB va tamgiac KBH co : HB chung

goc HAB = 90 = goc HKB do. ...

=> tamgiac AHB = tamgiac KBH (ch - gn)

=> AH = KB (dn)

c,  tamgiac HMC = tamgiac KMB  (Cau a) => CH = KB 

AH = KB (Cau b)

=> CH = HA 

xet tamgiacHMC va tamgiac HMA co :  HM chung

goc CHM = goc MHA do HM | AC (gt)

=>  tamgiacHMC = tamgiac HMA (2cgv)

=> MC = MA (dn)

=> tamgiac MCA can tai M (dn)

a) xét tam giác MHC và tam giác HKB có

MK=MH (GT)

BM=MC(GT)

GÓC M1=GÓC M2 (đối đỉnh)

suy ra tam giác MHC bằng tam giác HKB (c-g-c)

do tam giác MHC bằng tam giác HKB nên góc H bằng góc K= 90 độ

suy ra góc HKB bằng 90độ

13 tháng 5 2017

1. Ta có :

B(x)=x2+5    mà    xluôn > hoặc = 0

                       và 5>0

=>x2+5 luôn > 0

Vậy đa thức B(x) không có nghiệm

13 tháng 5 2017

Ta có : B ( x ) = x^2 + 5

Mà x^2 lớn hơn hoặc bằng 0

5 > 0

Suy ra x^2 + 5 > 0

Suy ra đa thức B ( x ) không có nghiệm

1 tháng 3 2019

tự kẻ hình : 

a, xét tam giác CAD và tam giác EAD có : AD chung

góc CAD = góc EAD do AD là phân giác của góc A (Gt)

góc DCA = góc DEA = 90 do ...

=> tam giác CAD = tam giác EAD (ch - gn)

b, xét tam giác KDC và tam giác BDE có : góc KDC = góc BDE (đối đỉnh)

DC = DE do tam giác CAD = tam giác EAD (Câu a)

góc DCK = góc DEB = 90 do...

=> tam giác KDC = tam giác BDE (cgv - gnk)

=> DK = DB (đn)

c, cm theo th c - g - c