Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ke hinh :
a, xet tamgiac MHB va tamgiac MKC co : HM = MK (gt)
CM = MB do M la trung diem cua BC(gt)
goc HMB = goc KMC (doi dinh)
=> tamgiac MHB = tamgiac MKC (c - g - c)
xet tamgiac HMC va tamgiac KMB co : HM = MK (gt)
goc HMC = goc KMB (doi dinh)
MC = MB (cmt)
=> tamgiac HMC = tamgiac KMB (c - g - c)
=> goc CHM = goc MKB
ma goc CHM = 90 do MH | AC (gt)
=> goc MKB = 90
b, MH | AC (gt)
tamgiac ABC vuong tai A (gt) => AB | AC (dn)
2 duong thang nay phan biet
=> HK // AB (dl)
MH | AB (gt)
goc MKB = 90 (cau a) => MK | KB
2 duong thang nay phan biet
=> AC // KB (dl)
goc AHB so le trong HBK
=> goc AHB = goc HBK (tc)
xet tamgiac AHB va tamgiac KBH co : HB chung
goc HAB = 90 = goc HKB do. ...
=> tamgiac AHB = tamgiac KBH (ch - gn)
=> AH = KB (dn)
c, tamgiac HMC = tamgiac KMB (Cau a) => CH = KB
AH = KB (Cau b)
=> CH = HA
xet tamgiacHMC va tamgiac HMA co : HM chung
goc CHM = goc MHA do HM | AC (gt)
=> tamgiacHMC = tamgiac HMA (2cgv)
=> MC = MA (dn)
=> tamgiac MCA can tai M (dn)
a) xét tam giác MHC và tam giác HKB có
MK=MH (GT)
BM=MC(GT)
GÓC M1=GÓC M2 (đối đỉnh)
suy ra tam giác MHC bằng tam giác HKB (c-g-c)
do tam giác MHC bằng tam giác HKB nên góc H bằng góc K= 90 độ
suy ra góc HKB bằng 90độ
1. Ta có :
B(x)=x2+5 mà x2 luôn > hoặc = 0
và 5>0
=>x2+5 luôn > 0
Vậy đa thức B(x) không có nghiệm
Ta có : B ( x ) = x^2 + 5
Mà x^2 lớn hơn hoặc bằng 0
5 > 0
Suy ra x^2 + 5 > 0
Suy ra đa thức B ( x ) không có nghiệm
tự kẻ hình :
a, xét tam giác CAD và tam giác EAD có : AD chung
góc CAD = góc EAD do AD là phân giác của góc A (Gt)
góc DCA = góc DEA = 90 do ...
=> tam giác CAD = tam giác EAD (ch - gn)
b, xét tam giác KDC và tam giác BDE có : góc KDC = góc BDE (đối đỉnh)
DC = DE do tam giác CAD = tam giác EAD (Câu a)
góc DCK = góc DEB = 90 do...
=> tam giác KDC = tam giác BDE (cgv - gnk)
=> DK = DB (đn)
c, cm theo th c - g - c
Trong tam giác ABH :
góc IAH = góc IHB (cùng phụ góc AHI)
Trong tam giác ACH :
góc CAH = góc CHK (cùng phụ góc AHK)
cộng vế với vế :
IAH +CAH = IHB +CHK
90 = IHB + CHK
Suy ra 180 - IHB - CHK = IHK
180-90 = IHK
90 = HIK
HI _l_ HK
Tứ giác AIHK có 4 góc vuôn nên AIHK là Hình chữ nhật
=> IA = HK và IK =AH