K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABC vuông tại A và ΔHBA vuông tại H có 

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{BA}\right)^2=\left(\dfrac{10}{6}\right)^2=\dfrac{25}{9}\)

c: AC=8cm

Xét ΔBAC có BD là phân giác

nên DA/AB=DC/BC

=>DA/3=DC/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)

Do đó: DC=5(cm)

26 tháng 4 2017

a, Xét tg ABC và tg HBA có:

       góc H = góc A (= 90o)

       góc B chung

=> Tg ABC đông dạng với tg HBA

Câu b, lm theo cách của mk thì hơi dài dòng bn muốn tham khảo thì mk sẽ lm còn câu c, thì mk phải lm đc câu b đã thì sẽ ra câu c

26 tháng 4 2017

bạn giải tiếp cho mk vs

21 tháng 3 2021

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

12 tháng 5 2016

a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có 
 góc B chung ( kí hiệu góc nhé :D) 
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé 
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v

 

13 tháng 5 2016

TỰ VẼ HÌNH NHA  

a) xét tám giác ABC và tam giác HBA 

góc A= góc H (=90 độ)

góc A :chung

=> tam giác ABC ~ tam giác HBA (g-g)

 

7 tháng 6 2019

Toán lớp 8 thì mik nghĩ bn vào lazi.vn hoặc hoc.24h.vn để hỏi nha 

~ Hok tốt ~
#JH

7 tháng 6 2019

a) 

Xét tam giác ABC ta có

\(AB^2+AC^2=BC^2\)(định lý py ta go)

144 + 256 = BC2

400 = BC2

BC = 20 ( cm )

Xét tam giác ABC có 

BD là đường phân giác của tam giác 

nên AD/DC = AB/BC = 16/20 = 4/5

có AD + DC = AC = 16 

dễ tìm ra AD = 64/9  (cm)

DC = 80/9 (cm)

b) xét 2 tam giác HBA và ABC

có góc ABC chung

2 góc AHB và CAB bằng nhau cùng bằng 90 độ

nên 2 tam giác HAB và ABC đồng dạng với nhau

c)

có 2 tam giác HAB và ABC đồng dạng với nhau

nên \(\frac{S_{HAB}}{S_{ABC}}=\left(\frac{AB}{BC}\right)^2=\left(\frac{12}{20}\right)^2=\frac{9}{25}\)

d)

có E là hình chiếu của của C trên BD

nên \(CE\perp BD\)

suy ra \(\widehat{BEC}=90^0\)

xét 2 tam giác BHK và BEC

có \(\widehat{BHK}=\widehat{BEC}=90^0\)

\(\widehat{CEB}\)chung

nên 2 tam giác BHK và BEC đồng dạng với nhau

suy ra \(\frac{BH}{BE}=\frac{BK}{BC}\Rightarrow BH\cdot BC=BK\cdot BE\)(1)

có 2 tam giác HAB và ABC đồng dạng với nhau

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\left(2\right)\)

từ (1) và (2) suy ra 

\(AB^2=BK\cdot BE\)

26 tháng 4 2022

a/

Xét tg vuông ABC và tg vuông HBA có \(\widehat{ACB}=\widehat{HAB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABC đồng dạng với tg HBA (g.g.g)

b/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{9^2+12^2}=5\sqrt{5}\) (Pitago)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông băng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{81}{5\sqrt{5}}=\dfrac{81\sqrt{5}}{25}\)

\(\Rightarrow CH=BC-BH=5\sqrt{5}-\dfrac{81\sqrt{5}}{25}=\dfrac{44\sqrt{5}}{25}\)

Ta có

\(AH^2=BH.CH\) (trong tg vuông bình phường đường cao thuộc cạnh huyền băng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH^2=\dfrac{81\sqrt{5}}{25}.\dfrac{44\sqrt{5}}{25}\) Khai căn ra AH

c/

Xét tg vuông BHI và tg vuông BEC có \(\widehat{CBE}\) chung

=> tg BHI đồng dạng với tg BEC (g.g.g)

\(\Rightarrow\dfrac{BI}{BC}=\dfrac{BH}{BE}\Rightarrow BI.BE=BH.BC\left(dpcm\right)\)