K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

a, xét tam giác abm vvaf tam giác dmc có

am=md(gt)

bm=mc(gt)

góc amb=góc cmd(đối đỉnh)

=>tam giác abm=tam giác dmc(cgc)

b, từ cm a ta có tam giác abm=tam giác dmc(cgc)

=>góc bam = góc mdc (2 góc tg ứng)

mà 2 góc lại nằm ở vị trí so le trg

=>ab//cd

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó:ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đo: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD
b: Xét ΔAMK và ΔDMF có

\(\widehat{MAK}=\widehat{MDF}\)

MA=MD

\(\widehat{AMK}=\widehat{DMF}\)

Do đo: ΔAMK=ΔDMF

Suy ra: MK=MF

hay M là trung điểm của KF

14 tháng 12 2016

bn xem lại cái đề ik khó hiểu wa r điểm O ở đâu lọt zô z?

15 tháng 12 2016

mk chép nhầm sr nha để mk chép lại r gử cho

17 tháng 3 2020

a/ Xét tam giác AMB và tam giác DMC có:

MA= MD( GT)

AMB=CMD( 2 góc đối đỉnh)

MB= MC( M là trung điểm của BC)

=> tam giác AMB= tam giác DMC(c.g.c)

b/ => góc BAM=MDC( theo a)

=> AB// CD( 2 góc ở vị trí sole trong bằng nhau)

c/ Xét tam giác AEM và tam giác AFM có:

AE= EF(GT)

góc EAM= FDM( theo b)

AM= DM( GT)

=> tam giác AEM = tam giác AFM(c.g.c)

Do đó: góc AME= góc DMF

=>góc AME+ AMF= DMF+ AMF

=>EMF= 180 độ

Vậy => E, M, F thẳng hàng.

Xin lỗi ! Bạn có thể tự vẽ hình dc ko?

1) Chứng minh ΔAMB=ΔCMD

Xét ΔAMB và ΔCMD có

BM=MD(gt)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

AM=MC(do M là trung điểm của AC)

Do đó: ΔAMB=ΔCMD(c-g-c)

2) Chứng minh AB=CD và AB//CD

Ta có: ΔAMB=ΔCMD(cmt)

⇒AB=CD(hai cạnh tương ứng)

Ta có: ΔAMB=ΔCMD(cmt)

\(\widehat{BAM}=\widehat{DCM}\)(hai góc tương ứng)

\(\widehat{BAM}\)\(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

3) Chứng minh E,M,F thẳng hàng

Xét tứ giác AFCE có

AE//FC(AB//CD, E∈AB, F∈CD)

AE=FC(gt)

Do đó: AFCE là hình bình hành(dấu hiệu nhận biết hình bình hành)

⇒hai đường chéo AC và FE cắt nhau tại trung điểm của mỗi đường(định lí hình bình hành)

mà M là trung điểm của AC(gt)

nên M là trung điểm của FE

hay F,M,E thẳng hàng(đpcm)

19 tháng 4 2020

Trả lời:
a.
Xét ΔMAB và ΔMDC, ta có:
AM = MD(gt)
BM = MC (gt)
góc BMA = góc DMC (đối đỉnh)
=> ΔMAB = ΔMDC (c.g.c)
b.
Vì ΔMAB = ΔMDC (cmt)
=> AB = DC (2 cạnh tương ứng)
và góc ABM = góc DCM (2 góc tương ứng)
mà góc ABM so le trong với góc DCM
=> AB //DC (đcpcm)

c.
Xét ΔABC và ΔDBC, ta có:
BA = DC (cmt)
BC chung (gt)
góc ABC = góc DCB (cmt)
=> ΔABC = ΔDBC (c.g.c)

d.(mk ko bt thông cảm nha )

Hok Tốt !

# mui #

a: Xét ΔAMB và ΔDMC có

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

b: Xét ΔCBD có 

M là trung điểm của BC

F là trung điểm của DC

Do đó: MF là đường trung bình

=>MF//BD

=>MF//AC

hay MK//AC
Xét ΔBAC có 

M là trung điểm của BC

MK//AC
DO đó: K là trung điểm của BA

Xét tứ giác BKCF có

BK//CF

BK=CF

Do đó: BKCF là hình bình hành

Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của KF