K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đo: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD
b: Xét ΔAMK và ΔDMF có

\(\widehat{MAK}=\widehat{MDF}\)

MA=MD

\(\widehat{AMK}=\widehat{DMF}\)

Do đo: ΔAMK=ΔDMF

Suy ra: MK=MF

hay M là trung điểm của KF

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

a: Xét ΔAMB và ΔDMC có

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔAMB=ΔDMC

Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

b: Xét ΔCBD có 

M là trung điểm của BC

F là trung điểm của DC

Do đó: MF là đường trung bình

=>MF//BD

=>MF//AC

hay MK//AC
Xét ΔBAC có 

M là trung điểm của BC

MK//AC
DO đó: K là trung điểm của BA

Xét tứ giác BKCF có

BK//CF

BK=CF

Do đó: BKCF là hình bình hành

Suy ra: Hai đường chéo BC và KF cắt nhau tại trung điểm của mỗi đường

hay M là trung điểm của KF

8 tháng 12 2018

a, xét tam giác abm vvaf tam giác dmc có

am=md(gt)

bm=mc(gt)

góc amb=góc cmd(đối đỉnh)

=>tam giác abm=tam giác dmc(cgc)

b, từ cm a ta có tam giác abm=tam giác dmc(cgc)

=>góc bam = góc mdc (2 góc tg ứng)

mà 2 góc lại nằm ở vị trí so le trg

=>ab//cd

5 tháng 4 2020

Xét ΔDCM và ΔABM có:

AM = MD ( GT )

BM = BC (AM là đường trung tuyến của ΔABC tại đỉnh A)

góc BMA = góc DMC ( hai góc đối đỉnh)

=> ΔDMC = Δ ABM (c.g.c)

=> Góc BAM = Góc MDC ( hai góc tương ứng)

mà Góc BAM và Góc MDC  nằm ở vị trí so le trong

=> AB\\CD

b) xét ΔAKM và Δ DFM có

góc KMA = góc DMF ( 2 góc đối đỉnh)

góc BAM = góc MDC (cmt)

AM = MD ( GT )

=> ΔAKM = ΔDFM (g.c.g)

=> MK = MF ( 2 cạnh tương ứng)

=> M là trung điểm của KF

Học tốt

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

16 tháng 4 2017

a) xét tam giac ABM và tam giac CDM  có :

BM=CM (gt)

AM=DM (gt)

góc BMA= góc DMC (đối đỉnh)

=>tam giác ABM= tam giác CDM (c.g.c)

Mà góc BAM = góc CDM (vì nằm ở vị trí so le trong)

=>AB//DC

16 tháng 4 2017

bn k cho mk trươc đi rồi mk giải tiếp cho 

14 tháng 4 2019

a, xét t.giác AMB và t.giác DMC có:

            AM=DM(gt)

           \(\widehat{AMB}\)=\(\widehat{DMC}\)(vì đối đỉnh)

          CM=BM(gt)

=>t.giác AMB=t.giác DMC(c.g.c)

b,đề bài bị thiếu

15 tháng 4 2019

mình viết nhầm câu b) I là trung điểm cD. 

a: Xét ΔMAB và ΔMDC có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//DC

b: Xét ΔKMB và ΔFMC có

góc MBK=góc MCK

MB=MC

góc KMB=góc FMC

=>ΔKMB=ΔFMC

=>MK=MF

=>M là trung điểm của KF