Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại H
Do đó: AH⊥BC
a:
góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB và BE vuông góc AC
Xét ΔABC có
CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
c: góc BDC=góc BEC=90 độ
=>BDEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
d: ID=IE
OD=OE
=>OI là trung trực của DE
=>OI vuông góc DE
a:
Gọi O là trung điểm của AB
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD vuông góc AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE vuông góc BC tại E
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
b: Xét ΔCAB có
AE,BD là đường cao
AE cắt BD tại H
=>H là trực tâm
=>CH vuông góc AB tại K
c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có
góc KAH chung
Do đó: ΔAKH đồng dạng với ΔAEB
=>AK/AE=AH/AB
=>AH*AE=AK*AB
Xét ΔBKH vuông tại K và ΔBDA vuông tại D có
góc KBH chung
Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA
=>BK*BA=BH*BD
AH*AE+BH*BD
=AK*AB+BK*BA
=BA^2
a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.
b) ....................... =) CH ⊥ AB.
c) ....................... =) AH.AE + BH.BD = AB2.
A B C O D E H F M K I
a) Ta có: Đường tròn (O) đường kính BC và 2 điểm D;E nằm trên (O)
=> ^BEC=^BDC=900 => BD vuông AC; CE vuông AB
Mà BD gặp CE tại H => H là trực tâm \(\Delta\)ABC
=> AH vuông BC (tại F) hay AF vuông BC (đpcm).
b) Thấy: \(\Delta\)ADH vuông đỉnh D, M là trg điểm AH
=> \(\Delta\)DMA cân đỉnh M => ^MDA=^MAD (1).
Tương tự: \(\Delta\)DOC cân đỉnh O => ^ODC=^OCD (2).
(1) + (2) => ^MAD+^ODC = ^MDA+^ODC = ^MAD+^OCD
Mà 2 góc ^MAD; ^OCD phụ nhau (Do \(\Delta\)AFC vuông đỉnh F)
=> ^MDA+^ODC=900 => ^MDO=900 => MD vuông OD
Lập luận tương tự: ME vuông OE => Tứ giác MEOD có ^MEO=^MDO=900
=> MEOD là tứ giác nội tiếp đường tròn đường kính OM
Xét tứ giác MFOD: ^MFO=^MDO=900 => Tứ giác MFOD nội tiếp đường tròn đường kính MO.
Do đó: 5 điểm M;D;O;E;F cùng thuộc 1 đường tròn đường kính OM (đpcm).
c) Dễ c/m \(\Delta\)EBF ~ \(\Delta\)CDF (c.g.c) => ^EFB=^CFD
=> 900 - ^EFB = 900 - ^CFD => ^EFA=^DFA hay ^EFM=^MFD
Xét tứ giác FEMD: Nội tiếp đường tròn => ^EFM=^KDM => ^MFD=^KDM
=> \(\Delta\)MKD ~ \(\Delta\)MDF (g.g) => \(\frac{MD}{MF}=\frac{MK}{MD}\Rightarrow MD^2=MK.MF\)(đpcm).
Gọi I là giao điểm BK và MC.
Dễ thấy: \(\Delta\)FEK ~ FMD (g.g) => \(\frac{FE}{FM}=\frac{FK}{FD}\Rightarrow FE.FD=FM.FK\)
Hoàn toàn c/m được: \(\Delta\)EFB ~ \(\Delta\)CFD (c.g.c) => \(\frac{FE}{FC}=\frac{BF}{FD}\Rightarrow FE.FD=BF.FC\)
Từ đó suy ra: \(FM.FK=BF.FC\)\(\Rightarrow\frac{BF}{FM}=\frac{FK}{FC}\)
\(\Rightarrow\Delta\)BFK ~ \(\Delta\)MFC (c.g.c) => ^FBK=^FMC . Mà ^FMC+^FCM=900
=> ^FBK+^FCM = 900 hay ^FBI+^FCI=900 => \(\Delta\)BIC vuông đỉnh I
=> BK vuông với MC tại điểm I.
Xét \(\Delta\)MBC: BK vuông MC (cmt); MK vuông BC (tại F) => K là trực tâm \(\Delta\)MBC (đpcm).
d) Thấy ngay: EH là phân giác trong của \(\Delta\)FEK. Mà EA vuông EH
=> EA là phân giác ngoài tại đỉnh E của \(\Delta\)FEK
Theo ĐL đường phân giác trg tam giác: \(\frac{KH}{FH}=\frac{AK}{AF}\)
\(\Leftrightarrow1+\frac{KH}{FH}=1+\frac{AK}{AF}\Rightarrow\frac{FK}{FH}=\frac{AK+AF}{AF}\Leftrightarrow\frac{FK}{FH}=\frac{FK+2AK}{AF}\)
\(\Leftrightarrow\frac{FK}{FH}=\frac{FK}{AF}+\frac{2AK}{AF}\Leftrightarrow\frac{FK}{AF}=\frac{FK}{FH}-\frac{2AK}{AF}\)
\(\Leftrightarrow\frac{FK}{AF}+\frac{FK}{FH}=\frac{2FK}{FH}-\frac{2AK}{AF}=2+\frac{2KH}{FH}-2+\frac{2KF}{AF}=\frac{2KH}{FH}+\frac{2KF}{AF}\)
\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2KH}{FH}+\frac{2KF}{AF}\)
Đến đây, lại thay: \(\frac{KH}{FH}=\frac{AK}{AF}\)(T/c đg phân giác)
\(\Rightarrow FK\left(\frac{1}{AF}+\frac{1}{FH}\right)=\frac{2\left(AK+KF\right)}{AF}=\frac{2AF}{AF}=2\)
\(\Leftrightarrow\frac{1}{AF}+\frac{1}{FH}=\frac{2}{FK}.\)(đpcm).
d.
Xét△FBH và △FAC có BFH=AFC=90*,FBH=FAC(cùng phụ BCD)
=>△FBH∼ △FAC(g.g) =>FH.FA=FB.FC .
Xét△FBK và △FMC có BFK=MFC=90*, FBK=FMC
=>△FBK ∼ △FMC(g.g)=>FK.FM=FB.FC .
=>FH.FA=FK.FM
Mà FH+FA=FM-MH+FM+MA=2FM
Ta có 2FH.FA=2FK.FM=>2FH.FA=FK(FH+FA)=>KL
a/ Ta có
\(BE\perp AC\Rightarrow\widehat{AEB}=90^o\)
\(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)
=> E và H cùng nhìn AB dưới 1 góc bằng 90 độ => E;H,A;B thuộc đường tròn bán kính = \(\frac{AB}{2}\) , tâm là trung điểm AB
b/ Ta có
\(\widehat{DBE}=\widehat{DFE}\) (Góc nội tiếp đường tròn tâm O cùng chắn cung DE)
\(\widehat{DBE}=\widehat{AHE}\) (Góc nội tiếp đường tròn ngoại tiếp HBAE cùng chắn cung AE)
\(\Rightarrow\widehat{DFE}=\widehat{AHE}\) => DF//AH (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 tạo thành hai góc ở vị trí đồng vị bằng nhau thì chúng // với nhau)
Mà \(AH\perp BC\Rightarrow DF\perp BC\)
c/
Từ E dựng đường thẳng vuông góc với BC cắt (O) tại I => gia của BC với EI là trung điểm EI (đường kính vuông góc với dây cung thì chia đôi dây cung) => I là điểm đối xứng E qua BC.
Nối I với H, D với H
Xét \(\Delta HDF\) và \(\Delta HEI\) ta có
\(BC\perp DF;BC\perp EI\) => BC đi qua trung điểm của DF và EI => tg HDF và tg HEI là tam giác cân tại H (có BC là đường cao đồng thời là đường trung trực)
\(\Rightarrow\widehat{HEI}=\widehat{HIE};\widehat{HDF}=\widehat{HFD}\) (góc ở đáy của tg cân)
Ta có DF//EI (cùng vuông góc với BC) => sđ cung DE = sđ cung FI (Trong đường tròn hai cung bị chắn bởi 2 dây // với nhau thì = nhau)
\(\Rightarrow\widehat{HFD}=\widehat{HEI}\) (góc nội tiếp cùng chắn 2 cung có số đo bằng nhau)
\(\Rightarrow\widehat{HEI}=\widehat{HIE}=\widehat{HDF}=\widehat{HFD}\) => tg HDF đồng dạng với tg HEI
\(\Rightarrow\frac{HD}{HE}=\frac{HF}{HI}\Rightarrow HD.HI=HE.HF\)
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF vuông góc AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE vuông góc AC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm
=>AH vuông góc BC tại D
b: Xét tứ giác AFHE có
góc AFH+góc AEH=90+90=180 độ
=>AFHE nội tiếp đường tròn đường kính AH
I là trung điẻm của AH
c:
Xét tứ giác BFHD có
góc BFH+góc BDH=180 độ
=>BFHD nội tiếp
=>góc DFH=góc DBH=góc EBC
góc IFD=góc IFH+góc DFH
=góc IHF+góc EBC
=góc DHC+góc EBC
=90 độ-góc FCB+góc EBC
=90 độ
=>IF là tiếp tuyến của (O)
Xét ΔIFD và ΔIED có
IF=IE
FD=ED
ID chung
=>ΔIFD=ΔIED
=>góc IED=góc IFD=90 độ
=>IE là tiếp tuyến của (O)
a: Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
hay B,C,D,E cùng thuộc một đường tròn
a: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó;ΔBEC vuông tại E
=>CE\(\perp\)BE tại E
=>CE\(\perp\)AB tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó;ΔBDC vuông tại D
=>BD\(\perp\)DC tại D
=>BD\(\perp\)AC tại D
Xét ΔABC có
BD,CE là đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
b: Xét tứ giác AEHD có \(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
=>AEHD là tứ giác nội tiếp đường tròn đường kính AH
=>A,E,H,D cùng nằm trên đường tròn đường kính AH
c: I là tâm của đường tròn đi qua 4 điểm A,E,H,D
=>I là trung điểm của AH
Gọi giao điểm của AH với BC là M
AH\(\perp\)BC
nên AH\(\perp\)BC tại M
\(\widehat{BHM}=\widehat{IHD}\)
mà \(\widehat{IHD}=\widehat{IDH}\)(ID=IH)
nên \(\widehat{BHM}=\widehat{IDH}\)
mà \(\widehat{BHM}=\widehat{BCD}\left(=90^0-\widehat{HBM}\right)\)
nên \(\widehat{IDH}=\widehat{BCD}\)
OB=OD
=>ΔODB cân tại O
=>\(\widehat{OBD}=\widehat{ODB}\)
=>\(\widehat{ODH}=\widehat{DBC}\)
\(\widehat{IDO}=\widehat{IDH}+\widehat{ODH}\)
\(=\widehat{DBC}+\widehat{DCB}\)
\(=90^0\)
=>ID\(\perp\)DO