K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Hỏi đáp ToánHỏi đáp Toán

2 tháng 7 2017

Đáng lẽ câu b nên cm AH2=HC.HB chứ ?

13 tháng 3 2019

A B C H

a) ta có SABC= 1/2.AB.AC=1/2AH.BC(L7cmroi)

b) △ABC~△BHA(gg)=> \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow AB^2=BH.BC\left(đpcm\right)\)

c)△BHA~△AHC(g-g(cùng ~△ABC))=> \(\frac{AH}{BH}=\frac{CH}{AH}\Leftrightarrow AH^2=BH.CH\left(cmx\right)\)

13 tháng 3 2019

ta chứng minh được tam giác HCA ~tam giác ACB (g.g) do : ^CHA = ^CAB(=90 độ) và ^HCA=^ACB(do H thuộc BC) => AH :AB = AC : BC => AH. BC =AC.AB

b) tương tự ta c/m tam giác HBA ~ tam giác ABC (g.g) lí do tương tự như bên trên có hai góc =90 độ (xem trong hình vẽ ^BHA=^BAC) VÀ có chung 1 góc abc => AB:BC=BH:AB=>AB.AB=BH.BC

C) Có tam giác HCA ~ tam giác ACB => ^HAC=^ABC(2 góc tương ứng) mà có góc HCA+góc HAC =90độ(t/c trong tam giác vuông) mặt khác ta cũng có góc ABH + HAB = 90độ (do tam giác ABC vuông tại A) => GÓC HCA =góc HAB ( cùng phụ với góc HAC và ABH) CHÚ Ý góc ABH = góc ABC . CUỐI cùng c/m tam giác HCA ~ tam giác HAB (g.g) => ah :ch =bh : ah => AH .AH =BH .CH

6 tháng 6 2019

b, Xét \(\Delta ABHvà\Delta CBAcó:\)

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{ABH}=\widehat{CBA}\)(là góc chung)

Vậy \(\Delta ABH\sim\Delta CBA\left(g-g\right)\)

\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow AB.AB=BC.BH\)

\(\Rightarrow AB^2=BC.BH\left(đpcm\right)\)

6 tháng 6 2019

a,Xét \(\Delta BACvà\Delta AHCó:\)

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\widehat{BCA}=\widehat{ACH}\)(là góc chung)

Vậy \(\Delta BAC\sim\Delta AHC\left(g-g\right)\)

19 tháng 5 2022

loading...  

3 tháng 4 2017

B A C H

a)xét tam giác AHB và tam giác CAB có:

góc AHB=góc BAC=90 độ

góc B chung

\(\Rightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)(chỗ này là câu b luôn nhé)

c)xét tam giác AHC và tam giá BAC có:

góc AHC=góc BAC=90 độ

góc C chung

\(\Rightarrow\Delta AHC\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{AC}{BC}=\dfrac{HC}{AC}\Rightarrow AC^2=HC\cdot BC\)

d)từ câu b)(hay câu a) ta có \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AH^2}{AC^2}=\dfrac{AB^2}{BC^2}\)(1)

từ câu c) ta có: \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow\dfrac{AH^2}{AB^2}=\dfrac{AC^2}{BC^2}\) (2)

từ (1) và (2) \(\Rightarrow\dfrac{AH^2}{AC^2}+\dfrac{AH^2}{AB^2}=\dfrac{AB^2}{BC^2}+\dfrac{AC^2}{BC^2}\\ \Leftrightarrow^{ }AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\\ \Leftrightarrow AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=1\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\)

3 tháng 4 2017

a) xét tam giác HAC và tam giác ABC có

Góc H = Góc A (=90o)

Góc C chung

=> tam giác HAC ~tam giác ABC (g.g)

=>\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)

=>AH.BC=AB.AC(đpcm)

b) Xét tam giác ABC và tam giác HBA có

Góc A=Góc H (=900)

Góc B chung

=>tam giác ABC ~tam giác HBA (g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>AB2=BH.BC (1)

c)Tam giác HAC~ tam giác ABC (cmt)

=>\(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=>AC2=HC.BC (2)

d) Từ (1) và (2) suy ra

\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BC.BH}+\dfrac{1}{BC.CH}=\dfrac{CH+BH}{BC.BH.CH}=\dfrac{BC}{BC.BH.CH}=\dfrac{1}{BH.CH}\)=>\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.CH}\left(3\right)\)

Từ (1)và (3) suy ra

\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)(đpcm)

okokokokok

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

Do đó: ΔABH\(\sim\)ΔCBA

Suy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

Xét ΔACH vuông tại H và ΔBCA vuông tại A có

góc C chung

Do đo: ΔACH\(\sim\)ΔBCA
Suy ra: CA/CB=CH/CA

hay \(CA^2=CH\cdot CB\)

b: \(BC^2=AB^2+AC^2\)

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

Suy ra: HA/HC=HB/HA

hay \(HA^2=HB\cdot HC\)

12 tháng 2 2020

Áp dụng các hệ thức lượng trong tam giác vuông ,ta được:

\(AH^2=BH.CH\)

\(AH.BC=AB.AC\)

Lớp 8 chưa học lượng giác mà??

a)  Xét tam giác AHC vuông tại H và tam giác AHB vuông tại H

Áp dụng định lý Pytago cho cả 2 tam giác:

Tam giác AHC: AH^2= AC^2 - CH^2 (1)

TAM GIÁC AHB: AH^2 =AB^2 - BH^2 (2)

(1) (2) Suy ra 2AH^2 = AB^2 + AC^2 - CH^2 - BH^2

                        2AH^2 = BC^2 - CH^2 - BH^2

                         2AH^2 = (BH+CH)^2 - CH^2 - BH^2

                          2AH^2 = 2BH.CH

                          AH^2 = BH.CH

b) Xét tam giác AHB và tam giác CAB:

H^ = A^ = 90 độ

B^ chung

2 tam giác AHB và tam giác CAB đồng dạng trường hợp (g-g)

Suy ra AH/CA = HB/AB= AB/BC

Vậy AH.BC = AB.AC