K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại E và F

Theo định lý Thales ta có: \(\frac{BP}{PC}=\frac{AE}{AF},\frac{QC}{QA}=\frac{AF}{BC},\frac{BC}{AE}=\frac{RA}{RB}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{BP}{PC}.\frac{QC}{QA}.\frac{RA}{RB}=\frac{AE}{AF}.\frac{AF}{BC}.\frac{BC}{AE}=1\left(DPCM\right)\)

15 tháng 2 2021

DAY LA HINH 

Kẻ CG//AB(G thuộc QP)

Xét ΔRBP có CG//RP

nên PC/PB=CG/RB=PG/PR

Xét ΔQAR và ΔQCG có

góc QAR=góc QCG

góc AQR=góc CQG

=>ΔQAR đồng đạng với ΔQCG

=>QA/QC=QR/QG=AR/CG

PB*PC*QC/QA=RB/CG*CG/AR=RB/RA

=>PB/PC*QC/QA*RA/RB=1

12 tháng 8 2020

Bài này rất dễ (đọc kĩ đề bài )

24 tháng 1 2021

A B C O Q P F E D

Từ A kẻ đường thẳng // BC cắt BO, CO kéo dài tại P và Q

Theo định lý Thales ta có: \(\frac{DB}{DC}=\frac{AP}{AQ},\frac{EC}{EA}=\frac{BC}{AP},\frac{FA}{FB}=\frac{AQ}{BC}\)

Nhân 3 đẳng thức vs nhau ta đc: 

\(\frac{DB}{DC}.\frac{EC}{EA}.\frac{FA}{FB}=\frac{AP}{AQ}.\frac{BC}{AP}.\frac{AQ}{BC}=1\) ( ĐPCM)

Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC

Kẻ AH vuông góc BC< OK vuông góc BC

=>OK//AH

OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S

=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)

=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)

Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)

=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)