K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

a) ta có : \(\overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BN}\) \(\Rightarrow\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\left|\overrightarrow{BN}\right|=2BN\)

\(=2\left(AB^2-NA^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

b) \(\overrightarrow{NB}\)

c) ta có : \(\overrightarrow{NA}+\overrightarrow{MB}+\overrightarrow{PC}=\overrightarrow{NA}+\overrightarrow{AM}+\overrightarrow{PC}=\overrightarrow{NM}+\overrightarrow{PC}\)

\(=\overrightarrow{NM}+\overrightarrow{MN}=\overrightarrow{0}\left(đpcm\right)\)

d) ta có : \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{AM}+\overrightarrow{MN}+\overrightarrow{NC}+\overrightarrow{MC}\)

\(\overrightarrow{MC}+\overrightarrow{MC}=2\overrightarrow{MC}\)

\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MN}+\overrightarrow{MP}+\overrightarrow{MC}\right|=2\left|\overrightarrow{MC}\right|=2MC\)

\(=2\left(AC^2-AM^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)

23 tháng 7 2018

a) áp dụng định lí ta lét ta có : \(\overrightarrow{MN}=\dfrac{1}{2}\overrightarrow{BC}\) \(\Rightarrow\left|\overrightarrow{MN}\right|=\left|\dfrac{1}{2}\overrightarrow{BC}\right|=\dfrac{1}{2}BC=\dfrac{1}{2}a\)

b) các vectơ đối của \(\overrightarrow{AM}\) là : \(\overrightarrow{AM}\)\(\overrightarrow{BM}\)

c) ta có : \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}\) \(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\)

ta có : \(AD=2AE\) (với \(E\) là giao điểm \(AD\)\(BC\) )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2AE=2\left(AB^2-BE^2\right)=2\left(a^2-\left(\dfrac{1}{2}a\right)^2\right)=\dfrac{3}{2}a^2\)d) ta có : \(\overrightarrow{AB}-\overrightarrow{AI}=\overrightarrow{IB}\) \(\Rightarrow\left|\overrightarrow{AB}-\overrightarrow{AI}\right|=\left|\overrightarrow{IB}\right|=IB\)

câu này bn xem lại đề nha

a: =>vecto BM+vecto MA=vecto BA

=>vecto BA=vecto BA(Luôn đúng)

b: =>vecto BA=vecto AB(loại)

c: =>vecto BA+vecto MC=vecto BA

=>vecto MC=vecto 0

=>M trùng với C

NV
11 tháng 5 2019

Bài 1:

Do hệ số \(a>0\Rightarrow y_{max}\) tại 1 trong 2 đầu mút của đoạn xét

\(-\frac{b}{2a}=1\); ta có \(1-\left(-1\right)>2-1\) nên \(y\) đạt max tại \(x=-1\)

\(y\left(-1\right)=1+2+m^2+m-5=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

Câu 2:

Gọi G là trọng tâm tam giác ABC

\(P=MA^2+MB^2+MC^2=\overrightarrow{MA}^2+\overrightarrow{MB}^2+\overrightarrow{MC}^2\)

\(=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

Do \(G\) cố định \(\Rightarrow P_{min}\Leftrightarrow MG_{min}\Rightarrow M\) là chân đường cao hạ từ \(G\) xuống BC \(\Rightarrow M\) là trung điểm BC

12 tháng 5 2019

em cảm ơn =)))

a: \(\overrightarrow{EF}=\overrightarrow{EO}+\overrightarrow{OF}\)

\(=-\overrightarrow{OE}+\overrightarrow{OF}\)

\(=-\dfrac{1}{2}\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\dfrac{1}{2}\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{OD}-\overrightarrow{OB}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{BD}\right)\)

b: \(VT=\left(\overrightarrow{OA}+\overrightarrow{OB}\right)+\left(\overrightarrow{OC}+\overrightarrow{OD}\right)\)

\(=2\cdot\overrightarrow{OE}+2\cdot\overrightarrow{OF}=\overrightarrow{0}\)