Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng định lý tổng ba góc cho tam giác abc, ta có:
a+b+c=180
thay: 100+20+c=180
suy ra: c=180-(100+20)=60
áp dụng đ/l cạnh đối diện vs góc lớn hơn, ta có:
a>c>b suy ra: bc>ab>ac
b, theo câu a, ta có:
ab>ac
mà:ah vuông góc vs ac
suy ra: hc là hình chiếu của ac
hb là hình chiếu của ab
do đó: hb>hc( t/c đường xiên và hình chiếu của chúng)
- các bạn ơi 1 like nha
B2 : Hình dễ bạn tử kẻ hình nhá !
a)Ta có AH là đường cao
=> Góc AHB = AHC = 90o
Xết tam giác AHB có :
BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )
=> BAH + 90o + 70o =180o
=> BAH = 180o-70o-90o
=> BAH = 20o
Xét tam giác AHC cps :
AHC + HAC + HCA = 180o
=> 90 + HAC + 30 = 180
=> HAC = 180-30-90=60o
b) Ta có AD là đường phân giác
=> ABD= CAD = 80/2 = 40o
Xét tam giác ADB có :
ABD + BDA +DAB = 180
=> 70 + BDA + 40 = 180
=> BDA = 180-40-70 = 70
Xét tam giác ADC có :
ACD + CDA + DAC = 180
=> 30 + CDA + 40 = 180
=> CDA = 180-40-30
=> CDA=110
( **** )
mk không bt ý kiến của mk đúng k nhưng bạn thử
Xét 2 tam giác thử đi
gọi tia AI cắt BC tại M
ta có \(\widehat{IAC}=\widehat{IAH}+\widehat{HAC}=\widehat{\frac{BAH}{2}}+\widehat{HAC}\)
và \(\widehat{AMC}=\widehat{B}+\widehat{MAH}=\widehat{B}+\widehat{\frac{BAH}{2}}\)
mà \(\widehat{B}=\widehat{HAC}\)(cùng phụ với \(\widehat{BAH}\)
từ 3 điều trên => tam giác ACN cân tại C
=> đường phân giác CI đông thời là đường cao (ĐPCM)
Gọi phân giác C cắt AH tại M
Ta có: góc B + góc C = 90*
Ta có: góc B + góc BAH = 90*
=> góc BAH = góc C
Theo giả thiết, AI là phân giác của góc BAH
nên góc BAI = góc IAH
Theo giả thiết, CI là phân giác của góc C
nên góc HCI = góc ICA
Vì góc BAH = góc C nên góc IAH = góc HCI (1)
Ta có: góc IMA = góc HMC (đối đỉnh) (2)
Ta có: tổng 3 góc của 1 tam giác bằng 180* (3)
Từ (1),(2),(3) => góc AIM = góc MHC = 90*
Vậy góc AIC = 90*
Bài 3:
\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)
\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//BC
Bài 15:
\(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)