K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

A B C I K M N D E 8cm

a) Xét  \(\Delta ABC\)có  \(AE=EB\)

                                  \(AD=DC\)

\(\Rightarrow\)ED là đường trung bình  \(\Delta ABC\)

\(\Rightarrow\hept{\begin{cases}ED=\frac{1}{2}BC\Leftrightarrow ED=\frac{1}{2}\times8=4\left(cm\right)\\ED//BC\end{cases}}\)

\(\Rightarrow\)EDCB là hình thang

Lại có :  \(EM=MB\)

             \(DN=NC\)

\(\Rightarrow\)MN là đường trung bình của hình thang EDCB

\(\Rightarrow MN=\frac{ED+BC}{2}=\frac{4+8}{2}=\frac{12}{2}=6\left(cm\right)\)

Vậy  \(MN=6cm\)

b) Xét  \(\Delta BED\)có M là trung điểm BE ; MI // ED

\(\Rightarrow\)MI là dường trung bình  \(\Delta BED\)

\(\Rightarrow MI=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)

Xét  \(\Delta CED\)có N là trung điểm CD ; NK // ED

\(\Rightarrow\)NK là đường trung bình  \(\Delta CED\)

\(\Rightarrow NK=\frac{1}{2}ED=\frac{1}{2}\times4=2\left(cm\right)\)

Lại có :  \(MI+IK+KN=MN\)

\(\Leftrightarrow2+IK+2=6\)

\(\Leftrightarrow IK=2\left(cm\right)\)

Vậy  \(MI=IK=KN\left(=2cm\right)\)

20 tháng 9 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AD=DC\end{matrix}\right.\Rightarrow ED\) là đtb tam giác ABC

\(\Rightarrow ED=\dfrac{1}{2}BC;ED//BC\Rightarrow BEDC\) là hthang

\(b,\left\{{}\begin{matrix}EM=MB\\DN=NC\end{matrix}\right.\Rightarrow MN\) là đtb hthang BEDC

\(\Rightarrow MN//DE//BC;MN=\dfrac{DE+BC}{2}\)

Mà \(EM=MB\Rightarrow BI=ID\Rightarrow MI\) là đtb tam giác BED

\(\Rightarrow MI=\dfrac{1}{2}DE=0,5DE=\dfrac{1}{2}\cdot\dfrac{1}{2}BC=\dfrac{1}{4}BC=0,25BC\)

\(c,\) \(\left\{{}\begin{matrix}NK//ED\\DN=NC\end{matrix}\right.\Rightarrow EK=KC\Rightarrow KN\) là đtb tam giác EDC

\(\Rightarrow KN=\dfrac{1}{2}ED=MI\left(1\right)\)

\(IK=MN-MI-KN=\dfrac{ED+BC}{2}-\dfrac{ED}{2}-\dfrac{ED}{2}\\ =\dfrac{BC-DE}{2}=\dfrac{2DE-DE}{2}=\dfrac{DE}{2}=MI=KN\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow MI=IK=KN\)

\(d,IN=NK+KI=\dfrac{1}{2}DE+\dfrac{1}{2}DE=DE;IN//DE\left(MN//DE\right)\)

\(\Rightarrow EDNI\) là hbh nên \(EI=ND\)

20 tháng 9 2020

1)\(\Delta\)ABC có E là trung điểm của AB, D là trung điểm của AC nên ED là đường trung bình của tam giác => ED//BC

Tứ giác EDCB có ED//BC nên là hình thang (đpcm)

2) Hình thang EDCB có M, N lần lượt là trung điểm của BE và CD nên MN là đường trung bình của hình thang => MN // ED hay \(\hept{\begin{cases}NK//ED\\MI//ED\end{cases}}\)

\(\Delta\)BED có M là trung điểm của BE và MI//ED nên I là trung điểm của BD

Tương tự ta suy ra được K là trung điểm của CE

c) Ta có: IK = IN  - KN = 1/2BC - 1/2ED = \(\frac{BC-ED}{2}=\frac{BC-\frac{BC}{2}}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

\(KN=MI=\frac{ED}{2}=\frac{\frac{BC}{2}}{2}=\frac{BC}{4}\)

Từ đó suy ra MI = IK = KN (đpcm)

8 tháng 10 2021

A B C D E I K M N

a/

ED=EA; DC=DA => ED là đường trung bình của tg ABC \(\Rightarrow ED=\frac{BC}{2}\Rightarrow BC=2.ED\)

=> ED//BC => BEDC là hình thang mà

MB=ME; NC=ND => MN là đường trung bình của hình thang BEDC \(\Rightarrow MN=\frac{ED+BC}{2}\)

b/

MN là đường trung bình của hình thang BEDC => ED//MN//BC

Xét tg BDE có

MB=ME; MI//ED => IB=ID (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> MI là đường trung bình của tg BDE \(\Rightarrow MI=\frac{ED}{2}\) (1)

Chứng minh tương tự ta cũng có KN là đường trung bình của tg CDE \(\Rightarrow KN=\frac{ED}{2}\) (2)

Ta có \(IK=MN-\left(MI+KN\right)=\frac{ED+BC}{2}-\left(MI+KN\right)=\)

\(=\frac{ED+2.ED}{2}-\left(\frac{ED}{2}+\frac{ED}{2}\right)=\frac{ED}{2}\) (3)

Từ (1) (2) và (3) => MI=IK=KN