Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
F là trung điểm của AC(gt)
M là trung điểm của BC(gt)
Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên FM//AE và FM=AE
Xét tứ giác AEMF có
FM//AE(cmt)
FM=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)
nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét ΔCAB có CF/CA=CE/CB
nên FE//AB và FE=AB/2
=>FE//AD và FE=AD
Xét tứ giác AFED có
FE//AD
FE=AD
góc FAD=90 độ
Do đó: AFED là hình chữ nhật
Xét tứ giác AECK có
F là trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)
a: Xét ΔCAB có CF/CA=CE/CB
nên FE//AB và FE=AB/2
=>FE//AD và FE=AD
Xét tứ giác AFED có
FE//AD
FE=AD
góc FAD=90 độ
Do đó: AFED là hình chữ nhật
Xét tứ giác AECK có
F là trung điểm chung của AC và EK
EA=EC
Do đó: AECK là hình thoi
b: \(S_{ABC}=\dfrac{1}{2}\cdot4\cdot5=10\left(cm^2\right)\)
a)Xét tứ giác AMDN có: góc AMD=900
góc MAN=900
góc DNA=900
=> Tứ giác AMDN là hình chữ nhật(dhnb hcn)
b)Xét tam giác ABC vuông tại A có:D là trung điểm của BC
=>AD là đường trung tuyến ứng với cạnh huyền BC
=>AD=BD=CD=BC/2
=> tg ACD cân tại D
Xét tg ACD cân tại D có: DN là đường cao
=>DN là đường trung tuyến của tam giác ADC
=>N là trung điểm của AC
A B C H D E F
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
Xét △ABC có : E là trung điểm AC (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của △ABC
=> EF // AB mà D ∈ AB
=> EF // AD
Xét △ABC có : D là trung điểm AB (gt)
F là trung điểm BC (gt)
=> DF là đường trung bình của △ABC
=> DF // AC mà E ∈ AC
=> DF // AE
Xét tứ giác ADFE có : EF // AD (cmt)
DF // AE (cmt)
=> Tứ giác ADFE là hình bình hành (DHNB)
Xét △ABC có : E là trung điểm AC (gt)
F là trung điểm BC (gt)
=> EF là đường trung bình của △ABC
=> EF // AB mà D ∈ AB
=> EF // AD
Xét △ABC có : D là trung điểm AB (gt)
F là trung điểm BC (gt)
=> DF là đường trung bình của △ABC
=> DF // AC mà E ∈ AC
=> DF // AE
Xét tứ giác ADFE có : EF // AD (cmt)
DF // AE (cmt)
=> Tứ giác ADFE là hình bình hành (DHNB)