K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2020

Ta có: AB < AC (gt)

Suy ra: HB < HC (đường xiên lớn hơn thì hình chiếu lớn hơn)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

* Trường hợp góc B nhọn

Trong Δ ABC, ta có: AB < AC

Suy ra: góc B > góc C(đối diện với cạnh lớn hơn là góc lớn hơn)

Trong Δ AHB, ta có góc AHB = \(90^0\)

Suy ra: góc B + góc HAB = \(90^0\) (tính chất tam giác vuông) (1)

Trong Δ AHC, ta có góc AHC = \(90^0\)

Suy ra: góc C + góc HAC = \(90^0\) (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: góc B + góc HAB) = góc C + góc HAC

Mà góc B > góc C nên góc HAB < góc HAC

* Trường hợp Btù

Vì điểm B nằm giữa H và C nên góc HAC = góc HAB + góc BAC

Vậy góc HAB < góc HAC.

14 tháng 4 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC ta có ∠AC > ∠AB (gt)

Suy ra: ∠B > ∠C (đối diện cạnh lớn hơn là góc lớn hơn)

Trong ΔAHB có ∠(AHB) = 90o

Suy ra: ∠B + ∠(HAB) = 90o (tính chất tam giác vuông) (1)

Trong ΔAHC có ∠(AHC) = 90o

Suy ra: ∠C + ∠(HAC) = 90o (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠B + ∠(HAB) = ∠C + ∠(HAC)

Mà ∠B > ∠C nên ∠(HAB) < ∠(HAC) .

19 tháng 4 2017

Giải bài 64 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 64 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

(Giải thích ở phần (**): nếu tổng của hai cặp số cùng bằng nhau (bằng 9090o chẳng hạn) thì số nào cộng với số lớn hơn thì nhỏ hơn số kia. Tức là:

a + b = 90o

c + d = 90o

mà b > d thì suy ra a < c)

19 tháng 4 2017

Lời giải

Giải bài 64 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7Giải bài 64 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

15 tháng 5 2019

A B C D H E F

Gộp a) + b) lại cho dễ làm:

Xét hai tam giác ABE và tam giác ACF:

Ta thấy rằng: \(\widehat{BEA}=\widehat{CFA}\)

Mà: \(\widehat{BEA}+\widehat{BAC}+\widehat{ABE}=180^o\Rightarrow\widehat{ABE}=180^o-\widehat{BEA}-\widehat{BAC}\) (tổng ba góc trong tam giác)

\(\widehat{CFA}+\widehat{BAC}+\widehat{ACF}=180^o\Rightarrow\widehat{ACF}=180^o-\widehat{CFA}-\widehat{BAC}=180^o-\widehat{BEA}-\widehat{BAC}=\widehat{ABE}\)

Từ đây,ta có: \(\widehat{ACF}=\widehat{ABE}\).Từ đây kết hợp giả thiết góc ABC > góc ACB suy ra:  \(\widehat{ABC}-\widehat{ABE}>\widehat{ACB}-\widehat{ACF}\)

Hay góc EBC > góc FCB . Đầu tiên,ta dễ c/m B,H,E thẳng hàng ,do BE là đường cao xuất phát từ đỉnh B.Lại thấy rằng H là giao điểm của 2 đường cao nên đường cao còn lại cũng đi qua nó.Do vậy H là trực tâm)Ta sẽ c/m C,H, F thẳng hàng để suy ra EBC = HBC > FCB = HCB tức là góc HBC > góc HCB.Để từ đó theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB

(mai mình hướng dẫn tiếp,buồn ngủ quá!)

16 tháng 5 2019

Chứng minh tiếp từ chỗ c/m C, H, F thẳng hàng nhé: (không chắc lắm đâu,mình dốt hình)

Ta có: H là giao điểm của hai đường cao  nên đường cao còn lại cũng đi qua H hay H là trực tâm.

Lại có: CH là đoạn thẳng xuất phát từ C đến trực tâm H nên thuộc đường cao xuất phát từ C. (1)

HF là đoạn thẳng hạ từ trực tâm H vuông góc với AB nên thuộc đường cao xuất phát từ C  (2)

Từ (1) và (2) suy ra C, H, F thẳng hàng   (3)

Từ đây suy ra \(\widehat{EBC}=\widehat{HBC}>\widehat{FCB}=\widehat{HCB}\)

Hay \(\widehat{HBC}>\widehat{HCB}\) vậy theo quan hệ giữa góc và cạnh đối diện trong tam giác BHC ta suy ra HC > HB

b) Theo kết quả của (3) (ở câu a) ta có C, H, F thẳng hàng.

c)Theo giả thiết ở câu a) ta có: \(\widehat{ABC}>\widehat{ACB}\).Theo quan hệ giữa góc và cạnh đối diện của tam giác ABC suy ra AC > AB

Suy ra  AC + AB > AB + AB = 2AB (4).

Lại có: Tam giác ABD vuông tại D (giả thiết AD là đường cao hạ từ A vuông góc với BC). Do đó AB là cạnh lớn nhất.

Suy ra AB > AD suy ra 2AB > 2AD (5)

Từ (4) và (5) kết hợp lại,ta có: AC + AB > 2AB > 2AD tức là AC + AB > 2AD.

d) Đang suy nghĩ...

30 tháng 10 2018

a. Ta có: \(\widehat{HAB}+\widehat{HAD}=\widehat{BAD}\)

\(\widehat{HAC}-\widehat{HAD}=\widehat{DAC}\)

Vì AD là tia phân giác của góc BAC => \(\widehat{BAD}=\widehat{DAC}\) =.> ĐPCM

b. Xét tam giác HAC có \(\widehat{AHC}+\widehat{HCA}+\widehat{HAC}=180\text{đ}\text{ộ}\)

=>\(\widehat{HAC}=180^o-\widehat{AHC}-\widehat{HCA}\)

Xét tam giác HAB có \(\widehat{HAB}+\widehat{ABH}+\widehat{BHA}=180^o\)

=> \(\widehat{HAB}=180^o-\widehat{ABH}-\widehat{BHA}\)

Ta có: \(\widehat{HAC}-\widehat{HAB}=180^o-\widehat{AHC}-\widehat{HAC}-\left(180^o-\widehat{ABH}-\widehat{BHA}\right)\)

\(=180^o-90^o-\widehat{HCA}-180^o+\widehat{ABH}+90^o\)

\(=180^o-180^o+90^o-90^o+\widehat{ABH}-\widehat{HCA}\)

\(=\widehat{ABH}-\widehat{HCA}=>\text{Đ}PCM\)

c. Ta có: \(\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)=\dfrac{\widehat{ABC}-\widehat{ACB}}{2}=\dfrac{\widehat{HAC}-\widehat{HAB}}{2}\)

\(=\dfrac{2\widehat{DAH}}{2}=\widehat{DAH}=>\text{Đ}pcm\)