K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

12 tháng 5 2021

A B C 6 8 10 H D D

a, dễ mà dài, bạn tự làm nhé 

b, Vì AD là đường pg của tam giác ABC nên 

\(\frac{AC}{AB}=\frac{CD}{BD}\)( tính chất )

mà \(BD=BC-CD=10-CD\)(*)

\(\Rightarrow\frac{8}{6}=\frac{CD}{10-CD}\Rightarrow CD=\frac{40}{7}\)cm 

Theo (*) suy ra : \(BD=10-\frac{40}{7}=\frac{30}{7}\)cm 

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

28 tháng 6 2020

A B C D H E K I F

a) Xét t/giác HBA và t/giác ABC

có: \(\widehat{B}\):chung

 \(\widehat{BHA}=\widehat{A}=90^0\)(gt)

=> t/giác HBA đồng dạng t/giác ABC (g.g)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 (định lí Pi - ta - go)

=> AC2 = BC2 - AB2 = 102 - 62 = 64

=> AC = 8 (cm)

Ta có: t/giác HBA đồng dạng t/giác ABC

=> HB/AB = AH/AC = AB/BC

hay HB/6 = AH/8 = 6/10 = 3/5

=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)

c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)

=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)

Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)

 \(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)

=> \(\widehat{AHK}=\widehat{C}\) (2)

Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)

Xét t/giác AKI và t/giác ABC

có: \(\widehat{A}=90^0\): chung

 \(\widehat{AIK}=\widehat{C}\)(cmt)

=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC 

d) Do AD là đường p/giác của t/giác ABC =>  \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)

<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)

=> BD = 10 - 40/7 = 30/7 (cm)

DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)

DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)

Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)