K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình như AB = 6 cm; H thuộc BC

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )

⇒Bc=10(cm)⇒Bc=10(cm)

Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)

⇒AD=AC−DC=8−5=3(cm)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)

 

 

9 tháng 4 2021

A B C H D I

9 tháng 4 2021

a) Vì \(\Delta ABC\) vuông tại A (giả thiết).

\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).

\(\Rightarrow6^2+8^2=BC^2\)(thay số).

\(\Rightarrow BC^2=36+64=100\)

\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)

Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)

9 tháng 4 2019

1,

xét tam giác abc có góc bac=90o

theo đlí pitago có

\(bc=\sqrt{ab^2+ac^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

lại có bd là p/g của tam giác abc

=>\(\frac{dc}{da}=\frac{bc}{ba}\Leftrightarrow\frac{dc}{dc+da}=\frac{bc}{bc+ba}\Leftrightarrow\frac{dc}{8}=\frac{10}{10+6}\Rightarrow dc=\frac{10.8}{16}=5\left(cm\right)\left(\text{tính chất tỉ lệ thức} \right)\)

=>ad=ac-dc=8-5=3(cm)

2,

\(\text{xét tam giác abc và tam giác hba có}\)

\(\widehat{bac}=\widehat{bha}=90^o\left(gt\right)\)

\(\widehat{b}chung\)

=> tam giác abc đồng dạng tam giác hba(gg)

a: CB=10cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA^2=BH*BC

c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có

góc ABD=góc HBI

=>ΔBAD đồng dạng với ΔBHI

=>BA/BH=BD/BI

=>BA/BD=BH/BI

=>BA/BH=BD/BI=BC/BA

=>ΔBDC đồng dạng với ΔBIA