Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có góc đối diện với cạnh nhỏ nhất là góc lớn nhất
mà \(AB< AC< BC\left(4< 6< 7\right)\)
\(\Rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
Sắp xếp : \(\widehat{C},\widehat{B},\widehat{A}\)
b, Cách vẽ đường trung trực
Bước 1 Xác định trung điểm của MN
Giả sử : I là trung điểm MN
Bước 2 Vẽ \(IM=\dfrac{1}{2}MN=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Bước 3 vẽ đường thẳng vuông góc với MN đi qua I
Hình vẽ :
M I N
Cậu tự vẽ hình
a. Xét tg ABC có:
BC2= 102=100
AB2 + AC2= 62 + 82 = 36 + 64 = 100
=> BC2=AB2 + AC2
=> Tam giác ABC vuông tại A (định lý Py-ta-go đảo)
b. Xét △BKM và △CKD vuông tại K có:
MK chung
BK=KC (K là trung điểm BC)
=> △BKM = △CKD (2cgv)
=> BM=CM (2 cạnh tương ứng)
Xét △DMC vuông tại D và △AMB vuông tại A có:
MB=CM (cmt)
góc BMC chung
=> △DMC = △AMB (ch-gn)
=> AB=DC (2 cạnh tương ứng)
a. Xét tam giác AMB và tam giác AMC:
AB = AC
AM chung
BM = CM (trung tuyến AM hạ từ A đến BC)
=> tam giác AMB = tam giác AMC
=> góc BAM = góc CAM (2 góc tương ứng)=>AM là tia phân giác của góc BACb. đề bài bị thiếuc. ta có BM = CM(cma) => BM = CM = \(\dfrac{BC}{2}\)= \(\dfrac{6}{2}\)= 3(cm) Áp dụng định lí Pi-ta-go vào tam giác ABM: AB2 = BM2 + AM2=> AM2 = AB2 - BM2 AM2 = 52 - 32 = 25 - 9 = 16(cm)=> AM = 4 cmtam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy_
Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm
a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC
b.Trên tia đối AB lấy điểm D sao cho AD=AB.Gọi K là trung điểm của cạnh BC,đường thẳng DK cắt AC tại M.Chứng minh BC=CD và tính độ dài đoạn thẳng AM
c.Đường trung trực d của đoạn thẳng ac cắt đường thẳng DC tại Q.Chứng minh ba điểm B,M,Q thẳng hàng.
giải :
tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (định lý Pytago)
mà AB = 6; BC = 10
=> 6^2 + AC^2 = 10^2
=> AC^2 = 100 - 36
=> AC^2 = 64
=> AC = 8 do AB > 0
vậy ...
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc BC
c: BM=CM=3cm
=>AM=4cm
Sắp xếp các gốc theo thứ tự từ lớn đến bé:
Ta có: \(AC>BC>AB\)
\(\Rightarrow\widehat{B}>\widehat{A}>\widehat{C}\)