K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2021

Xét ΔAMB và ΔEMC có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔAMB=ΔEMC

10 tháng 12 2021

Xét ΔABM và ΔECM có:

BM = CM (do M là trung điểm của BC)

^AMB = ^EMC (2 góc đối đỉnh)

AM = EM (giả thiết)

=> ΔABM = ΔECm (c.g.c)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a.

Xét tam giác $AMB$ và $EMC$ có:

$\widehat{AMB}=\widehat{EMC}$ (đối đỉnh)

$AM=EM$

$MB=MC$

$\Rightarrow \triangle AMB=\triangle EMC$ (c.g.c)

b.

Vì $\triangle AMB=\triangle EMC$ nên $\widehat{MAB}=\widehat{MEC}$

Mà 2 góc này ở vị trí so le trong nên $EC\parallel AB$

Mà $AB\perp AC$ nên $EC\perp AC$ (đpcm)

c.

Vì $\triangle AMB=\triangle EMC$ nên:

$AB=EC$

Vì $EC\perp AC$ nên $\widehat{ECA}=90^0=\widehat{BAC}$

Xét tam giác $ECA$ và $BAC$ có:
$\widehat{ECA}=\widehat{BAC}=90^0$ (cmt)

$AC$ chung

$EC=BA$ (cmt)

$\Rightarrow \triangle ECA=\triangle BAC$ (c.g.c)

$\Rightarrow EA=BC$

Mà $EA=2AM$ nên $2AM=BC$ (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

a: Xét ΔAMB và ΔEMC co

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

nên ΔBAD cân tại B

=>BD=BA=CE

c: Xét ΔAMD có

MH vừa là đường cao, vừa là trung tuyến

nên ΔAMD cân tại M

19 tháng 11 2016

Ta có hình vẽ:

A B C M E D F

a) Xét Δ AMB và Δ EMC có:

BM = CM (gt)

AMB = EMC (đối đỉnh)

AM = ME (gt)

Do đó, Δ AMB = Δ EMC (c.g.c) (đpcm)

b) Vì Δ AMB = Δ EMC (câu a) => ABM = ECM (2 góc tương ứng)

Mà ABM và ECM là 2 góc so le trong nên AB // EC (đpcm)

c) Vì AB // EC (câu b) => CAB = FCE (đồng vị)

Δ AMB = Δ EMC (câu a) => AB = EC (2 cạnh tương ứng)

Xét Δ ABC và Δ CEF có:

AC = CF (gt)

BAC = ECF (cmt)

AB = EC (cmt)

Do đó, Δ ABC = Δ CEF (c.g.c) (1)

Dễ dàng => Δ AMC = Δ EMB (c.g.c)

=> ACM = EBM (2 góc tương ứng)

Mà ACM và EBM là 2 góc so le trong nên AC // BE

Xét Δ ABC và Δ ECB có:

ABC = BCE (vì AB // EC, ABC và BCE là 2 góc so le trong)

BC là cạnh chung

ACB = EBC (vì AC // BE; ACB và EBC là 2 góc so le trong)

Do đó, Δ ABC = Δ ECB (g.c.g) (2)

Từ (1) và (2) => Δ CEF = Δ ECB hay Δ FEC = Δ BCE (đpcm)

d) Vì Δ ABC = ECB (câu c) nên AC = BE (2 cạnh tương ứng)

Xét Δ ABC và Δ BDE có:

AB = BD (gt)

BAC = DBE (vì AC // BE, BAC và DBE là 2 góc đồng vị)

AC = BE (cmt)

Do đó, Δ ABC = Δ BDE (c.g.c)

Mà Δ ABC = Δ ECB (câu b) nên Δ BDE = Δ ECB

=> BED = EBC (2 góc tương ứng)

Mà BED và EBC là 2 góc so le trong nên BC // DE (*)

Vì Δ ECB = Δ CEF (câu c) nên BCE = FEC (2 góc tương ứng)

Mà BCE và FEC là 2 góc so le trong nên BC // EF (**)

TỪ (*) và (**) => DE trùng với EF hay 3 điểm D, E, F thẳng hàng (đpcm)

21 tháng 11 2016

Sao bạn vẽ đc hình vậy ?lolang

21 tháng 12 2021

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

5 tháng 12 2014

a.Xét 2 TG AMB và EMC; ta có:

  MA=ME(gt); MB=MC( vì M là trung điềm BC); BMA=EMC( đối đỉnh)

=>TG AMB=TG EMC(c.g.c)

b. TG AMB= TG EMC=> BAM=MEC(2 góc tương ứng)

 mà chung lại ờ vị trí slt

=>AB//CE

17 tháng 12 2016

a.Xét tam giác ABM và tam giác ECM có:

MA=ME(gt)

MB=MC(gt)

góc AMB=góc EMC(đối đỉnh)

Do đó tam giác ABM=tam giác ECM(c.g.c)

b. Vì tam giác ABM= tam giác ECM

=>góc AMB=góc CME(2 góc tương ứng)

=>AB//CE(2 góc bằng nhau ở vị trí so le trong)

Nhớ vẽ hình cho dễ so sánh nha bạn

21 tháng 12 2018

https://cunghocvui.com/danh-muc/toan-lop-7 Trong này có lời giải nhée

15 tháng 12 2019

Xét \(\Delta ABM\)\(\Delta ECM\)có :

\(M_1=M_2\)(đối đỉnh)

\(BM=CM\)(gt)

\(AM=EM\)(gt)

\(=>\Delta ABM=\Delta ECM\)(c.g.c)

b,Do \(\Delta ABM=\Delta ECM\)(câu a)

\(=>A=E\)

\(=>AB//EC\)(so le trong)

c, Do \(HF\)là tia đối của tia \(HA\)(1)

\(AHB=90^0\)(2)

Từ (1) và (2) => \(FHB=AHB=90^0\)

Xét \(\Delta AHB\)và \(\Delta FHB\)có :

\(AH=FH\)(gt)

\(HB\)(cạnh chung)

\(AHB=FHB\)(c/m trên)

\(=>\Delta AHB=\Delta FHB\)(c.g.c)

\(=>ABH=FBH\)

\(=>ĐPCM\)

P/S: Chưa check lại và chưa ghi dấu nón cho góc =))