Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -△ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
\(\Rightarrow\widehat{MBC}=\widehat{MCB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)
\(\Rightarrow\widehat{BMC}=180^0-\widehat{MBC}-\widehat{MCB}=180^0-50^0-50^0=80^0\)
b) \(AB=AC\) \(\Rightarrow\)A thuộc đg trung trực của BC. (1)
\(\widehat{MBC}=\widehat{MCB}=50^0\)\(\Rightarrow\)△BMC cân tại M\(\Rightarrow BM=CM\)\(\Rightarrow\)M thuộc đg trung trực BC (2)
-Từ (1), (2) suy ra AM là đg trung trực của BC.
a) Xét tam giác ABM và tam giác ACK có:
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAK}\) (Cùng phụ với \(\widehat{MAC}\) )
\(\widehat{ABM}=\widehat{ACK}\) (Cùng phụ với \(\widehat{BCA}\) )
\(\Rightarrow\Delta ABM=\Delta ACK\left(g-c-g\right)\)
\(\Rightarrow BM=CK\)
b) Gọi N là trung điểm BC. Do tam giác ABC cân tại A nên AN cũng là đường cao.
Do HB và KC cùng vuông góc với BC nên HB // CK.
Xét hình thang vuông HBCK có N là trung điểm BC, AN // HB // CK
Suy ra AN là đường trung bình hình thang. Vậy nên A là trung điểm HK.