Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)
Xét tam giác $AMB$ và $AMC$ có:
\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)
b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)
Mà \(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)
Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)
Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)
\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)
Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)
A B C M
a/ Câu này không chỉ có 1 cách mình trình bày!
Xét tam giác ABM và tam giác ACM có:
góc BAM = góc CAM (gt)
AM: chung
AB = AC (tam giác ABC cân tại A)
=> tam giác ABM = tam giác ACM (c.g.c)
b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao
PS: Học tính chất tam giác cân là làm được
a) Xét tam giác ABM và tam giác ACM có:
AM cạnh chung
AB=AC( tam giác ABC cân tại A )
MB=MC (gt)
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) AM- đường trung tuyến của tam giác ABC (gt)
Và K trọng tâm của tam giác ABC
Suy ra K thuộc AM
Suy ra A,K,M thẳng hàng
a: Ta cóΔAMB=ΔAMC
nên MB=MC
hay M là trung điểm của BC
b: Ta có: ΔAMB=ΔAMC
nên \(\widehat{BAM}=\widehat{CAM}\)
=>AM là phân giác của góc BAC
c: Ta có: ΔAMB=ΔAMC
nên AB=AC
mà MB=MC
nên AM là đường trung trực của BC
=>AM\(\perp\)BC
Hoàng Thị Ngọc Anh, chú tuổi gì, Thiên Thảo, Guyo, Mai Linh, Phạm Thái Dương, Lưu Thùy Dung, Nguyễn Văn Toàn, Hoa Thiên Lý, Sky SơnTùng, Nguyễn Thái Bình, Akai Haruma, Nhã Doanh, Phạm Nguyễn Tất Đạt, ngonhuminh, Mashiro Shiina, ,Nguyễn Minh Hùng, Nguyễn Thanh Hằng, nguyen thi vang, Phùng Khánh Linh, kuroba kaito, Nguyễn Huy Tú, Hoàng Lê Bảo Ngọc, Trần Việt Linh, Võ Đông Anh Tuấn, Phương An, Ace Legona, soyeon_Tiểubàng giải,...
A B C D I K M 1 2
a)
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
b)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
c)
Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:
IMA = KMD (2 góc đối đỉnh)
MA = MD (gt)
=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)
=> IM = KM (2 cạnh tương ứng)
Hình tự vẽ nha
a) Xét TG ABC và TG AMC có:
AB = AC (gt)
BM = CM (gt)
AM cạnh chung
Do đó TG AMB = TG AMC ( c-c-c)
b)suy ra góc AMB = AMC (2 góc t/ứ)
mà 2 góc này ở vị trí kề bù
suy ra AM⊥BC
Ta có: AM⊥BC (cmt)
AM⊥a (gt)
suy ra a//BC
tick nha
a) Xét ΔAMB và ΔAMC , có:
AM là cạnh chung
AB = AC ( gt )
MB = MC ( M là trung điểm của BC )
=> ΔAMB = ΔAMC ( c-c-c )
b) Có: ΔAMB = ΔAMC ( câu a)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc kề bù
=> \(\widehat{AMB}=\widehat{AMC}=180^0:2=90^0\)
=> AM ⊥ BC
Có: \(\left\{{}\begin{matrix}\text{a ⊥ AM}\\BC⊥AM\end{matrix}\right.\)
=> a // BC
c) Có: a ⊥ AM (GT)
Mà: AM // CN (GT)
=> a ⊥ CN
Hay: AN ⊥ CN
Ta có: AM // CN (GT)
=> \(\widehat{MAC}=\widehat{NAC}\) (2 góc so le trong)
Xét 2 tam giác vuông ΔAMC và ΔCNA ta có:
Cạnh huyền AC: chung
\(\widehat{MAC}=\widehat{NAC}\) (cmt)
=> ΔAMC = ΔCNA (c.h - g.n)
tự kẻ hình nha
a) xét tam giác BMD và tam giác CMA có
AM=MD(gt)
BM=CM(gt)
AMC=BMD( đối đỉnh)
=> tam giác BMD= tam giác CMA(cgc)
=> BDM=MAC( hai góc tương ứng)
mà BDM so le trong với MAC=> AC//BD, BA vuông góc với AC=> BA vuông góc với BD=> ABD=90 độ
b) từ tam giác BMD= tam giác CMA=> BD=AC( hai cạnh tương ứng)
xét tam giác ABC và tam giác BAD có
BD=AC(cmt)
AB chung
BAC=ABD(=90 độ)
=> tam giác ABC= tam giác BAD(cgc)
c) từ tam giác ABC= tam giác BAD => AD=BC( hai cạnh tương ứng)
mà AM=MD=> M là trung điểm của AD
và M là trung điểm của BC=> AM=MD=BM=CM
=> 2AM=BM+CM
=> 2AM=BC
=> AM=1/2BC
A B C M
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)