Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
a)Xét tam giác AMB và tam giác AMC có:
AM chung
AB=AC(do tam giác ABC cân tại A)
BM=MC(đường trung tuyến AM cắt BC tại M)
=>tam giác AMB = tam giác AMC (c.c.c)
b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)
mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC
c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)
Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82
<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)
Câu 1:
Xét tam giác AMB và tam giác AMC ta có:
AB = AC (tam giác ABC cân tại A)
ABM = ACM (tam giác ABC cân tại A)
=> Tam giác AMB = tam giác AMC (ch-gn) (dpcm)
Câu 2:
a) Ta có: +) AK+KB = AB => KB = AB-AK
+) AH+HC = AC => HC = AC-AH
Mà AB=AC(tam giác ABC cân tại A) ; AK=AH (gt)
=>KB=HC
Xét tam giác BHC và tam giác CKB ta có:
HC=KB (cmt)
HCB=KBC (tam giác ABC cân tại A)
BC là cạnh chung
=>tam giác BHC = tam giác CKB (c.g.c)
=>BH=CK (2 cạnh tương ứng) (dpcm)
Xét tam giác ABH và tam giác ACK ta có:
AB=AC (tam giác ABC cân tại A)
BH=CK (cmt)
AH=AK (gt)
=> tam giác ABH = tam giác ACK (c.c.c)
=> ABH = ACK (2 góc tương ứng) (dpcm)
b) Theo a) tam giác BHC= tam giác CKB
=> HBC=KCB (2 góc tương ứng) hay OBC=OCB
=> Tam giác OBC là tam giác cân tại O (dpcm)
c) Theo b tam giác OBC cân tại O => OB=OC
Theo a góc ABH = góc ACK => KBO= HCO
Xét tam giác OKB và tam giác OHC ta có:
KB=HC (theo a)
KBO=HCO (cmt)
OB=OC (cmt)
=> tam giác OKB = tam giác OHC (c.g.c)
=> OK = OH (2 cạnh tương ứng) hay tam giác OKH là tam giác cân tại O (dpcm)
d) Gọi giao điểm của AO và KH là I
Xét tam giác AKO và tam giác AHO ta có:
AK=AH (gt)
AO là cạnh chung
OK=OH (theo c)
=> tam giác AKO = tam giác AHO (c.c.c)
=> KAO = HAO (2 góc tương ứng) hay KAI=HAI
Xét tam giác KAI và tam giác HAI ta có:
AK=AH (gt)
KAI=HAI (cmt)
AI là cạnh chung
=> tam giác KAI = tam giác HAI ( c.g.c)
=> KI=HI , mà I nằm giữa H và K
=> I là trung điểm của KH hay
AO đi qua trung điểm của KH (dpcm)
a, xét △ AMB và △ AMC có:
AB=AC(gt)
góc BAM=góc CAM (gt)
AM chung
=> △ AMB= △ AMC(c.g.c)
b,xét △ AHM và △ AKM có:
AM cạnh chung
góc HAM=ˆgóc KAM (gt)
=>△ AHM= △ AKM(CH-GN)
=> AH=AK
c,gọi I là giao điểm của AM và HK
xét △ AIH và △ AIK có:
AH=AK(theo câu b)
góc AIH=ˆgóc AIK (gt)
AI chung
=> △ AIH=△ AIK (c.g.c)
=> góc AIH=ˆgóc AIK
mà góc AIH+góc AIK=180độ(2 góc kề bù)
=> HK ⊥ AM
a) Xét tam giác ABM và tam giác ACM có:
AM cạnh chung
AB=AC( tam giác ABC cân tại A )
MB=MC (gt)
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) AM- đường trung tuyến của tam giác ABC (gt)
Và K trọng tâm của tam giác ABC
Suy ra K thuộc AM
Suy ra A,K,M thẳng hàng
Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [E, D] Đoạn thẳng n: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng s: Đoạn thẳng [M, I] Đoạn thẳng t: Đoạn thẳng [M, J] A = (0.26, 6.08) A = (0.26, 6.08) A = (0.26, 6.08) B = (-1.78, 1.2) B = (-1.78, 1.2) B = (-1.78, 1.2) C = (5.58, 1.02) C = (5.58, 1.02) C = (5.58, 1.02) Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
a) Xét ΔABC có AB=AC=5
=> ΔABC cân tại A
ta có AM là trung tuyến => AM là đường phân giác của góc A (tc Δ cân)
=>\(\widehat{B}=\widehat{C}\)(tc)
Xét ΔABM và ΔACM có
AB=AC gt
có AM là trung tuyến => BM=CM
\(\widehat{B}=\widehat{C}\) (cmt)
=>ΔABM = ΔACM (cgc)
b) có ΔABC cân
mà AM là trung tuyến => AM là đường cao (tc Δ cân)
c) ta có AM là trung tuyến =>
M là trung điểm của BC
=> BM=CM=\(\dfrac{BC}{2}=\dfrac{6}{2}=3\)cm
Xét ΔABM có AM là đường cao => \(\widehat{AMB}=\)90o
=> AM2+BM2=AB2
=> AM2+32=52
=> AM =4 cm
d) Xét ΔBME và ΔCMF có
\(\widehat{MEB}=\widehat{MFC}=\)90o (ME⊥AB,MF⊥AC)
BM=CM (cmt)
\(\widehat{B}=\widehat{C}\)
=>ΔBME = ΔCMF (ch-cgv)
=>EM=FM( 2 góc tương ứng)
Xét ΔMEF có
EM=FM (cmt)
=> ΔMEF cân tại M
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C M
a/ Câu này không chỉ có 1 cách mình trình bày!
Xét tam giác ABM và tam giác ACM có:
góc BAM = góc CAM (gt)
AM: chung
AB = AC (tam giác ABC cân tại A)
=> tam giác ABM = tam giác ACM (c.g.c)
b/ Vì tam giác ABC cân tại A => AM vừa là đường phân giác vừa là đường cao
PS: Học tính chất tam giác cân là làm được