Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(AHB\) và \(AHC\) có:
\(AB=AC\left(gt\right)\)
\(HB=HC\) (vì H là trung điểm của \(BC\))
Cạnh AH chung
=> \(\Delta AHB=\Delta AHC\left(c-c-c\right).\)
b) Xét 2 \(\Delta\) \(ABH\) và \(DCH\) có:
\(AH=DH\left(gt\right)\)
\(\widehat{AHB}=\widehat{DHC}\) (vì 2 góc đối đỉnh)
\(BH=CH\) (vì H là trung điểm của \(BC\))
=> \(\Delta ABH=\Delta DCH\left(c-g-c\right)\)
=> \(\widehat{ABH}=\widehat{DCH}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD.\)
Chúc bạn học tốt!
d) Gọi M là giao điểm của HA và KI
\(\Delta\)HKB = \(\Delta\)HIC ( theo c)
=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )
=> ^BHA - ^BHK = ^CHA - ^CHI
=> KHA = ^IHA hay ^KHM = ^IHM (1)
Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung
=> \(\Delta\)IHM = \(\Delta\)KHM
=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ
=> ^HMK = ^HMI = 90 độ
hay HA vuông KI
mà HA vuông BC
=> KI // BC
A B C H
a) Xét tam giác AHB và tam giác AHC có:
AH chung
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)
AB=AC (tam giác ABC cân tại A)
=> Tam giác AHB=tam giác AHC (đpcm)
b) Xét tam giác ABC cân tại A có AH là đường cao
=> AH trùng với đường trung tuyến
=> H là trung điểm BC => HB=HC (đpcm)
A B C H M N D 1 2 1 2
Cm: a) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
AH : chung
BH = CH (gt)
=> t/giác ABH = t/giác ACH (c.c.c)
Ta có: t/giác ABH = t/giác ACH (cmt)
=> \(\widehat{H_1}=\widehat{H_2}\) (2 góc t/ứng)
Mà \(\widehat{H_1}+\widehat{H_2}=180^0\) (kề bù)
=> \(\widehat{H_1}=\widehat{H_2}=90^0\) => t.giác AHB là t/giác vuông
c) Xét t/giác AHB và t/giác DHC
có AH = HD (gt)
BH = CH (gt)
\(\widehat{AHB}=\widehat{CHD}\) (đối đỉnh)
=> t/giác AHB = t/giác DHC (c.g.c)
=> \(\widehat{BAH}=\widehat{HDC}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CD
d) Xét t/giác ABM và t/giác CNM
có: AM = MC (gt)
BM = MN (gt)
\(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)
=> t.giác ABM = t/giác CNM (c.g.c)
=> AB = CN (2 cạnh tứng)
Mà AB = CD (vì t/giác ABH = t/giác DCH)
=> DC = CN => C là trung điểm của BN
Sao lại \(\widehat{A}>\widehat{B}\) là \(90^0\) là sao em? Roxie
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
a/
*Cách 1:
Ta có: ΔABC cân tại A
=> AC = AB
Và: \(\widehat{ABC}=\widehat{ACB}\)
Hay: \(\widehat{ABH}=\widehat{ACH}\)
Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AB = AC (cmt)
\(\widehat{ABH}=\widehat{ACH}\) (cmt)
Do đó: ΔAHB = ΔAHC (c.h - g.n)
*Cách 2:
Xét ΔAHB và ΔAHC có:
AB = AC (ΔABC cân tại A)
AH: cạnh chung
=> ΔAHB = ΔAHC (c.h - c.g.v)
b) Có: ΔAHB = ΔAHC (câu a)
=> HB = HC (2 cạnh tương ứng)
Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:
Cạnh huyền HB = HC (câu b)
\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)
=> ΔEBH = ΔFCH (c.h - g.n)
d) Sửa đề: EF // BC
Có: ΔEBH = ΔFCH (câu c)
=> EB = FC (2 cạnh tương ứng)
Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)
Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)
=> AE = AF
=> ΔAEF cân tại A
=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)
Có: ΔABC cân tại A
=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)
Mà 2 góc này lại là 2 góc đồng vị
=> EF // BC
a) \(\Delta AHB\)và \(\Delta AHC\)có :
\(AB=AC\)( vì \(\Delta ABC\)là tam giác cân )
\(AH\)là cạnh chung
\(BH=CH\)( vì H là trung điểm của BC )
Do đó : \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)
bn ơi mk xl nha, mk ko biết vẽ hình trên olm!!!
\(\Delta ABC\)cân tại \(A\) có \(H\)là trung điểm \(BC\)
\(\Rightarrow\)\(AH\)là trung tuyến đồng thời là đường cao
\(\Rightarrow\)\(AH\perp BC\)
\(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}=90^0\)
Xét 2 tam giác vuông: \(\Delta AHB\)và \(\Delta AHC\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\) (gt)
suy ra: \(\Delta AHB=\Delta AHC\) (ch_gn)