K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

a) Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân tại A )

AH chung

=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )

b) Từ tam giác vuông AHB = tam giác vuông AHC

=> ^BAH = ^CAH ( hai góc tương ứng )

Xét tam giác vuông AHE và tam giác vuông AHF có :

AH chung

^BAH = ^CAH ( cmt )

=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )

=> HE = HF ( hai cạnh tương ứng )

13 tháng 4 2020

a/

*Cách 1:

Ta có: ΔABC cân tại A

=> AC = AB

Và: \(\widehat{ABC}=\widehat{ACB}\)

Hay: \(\widehat{ABH}=\widehat{ACH}\)

Xét 2 tam giác vuông ΔAHB và ΔAHC có:

AB = AC (cmt)

\(\widehat{ABH}=\widehat{ACH}\) (cmt)

Do đó: ΔAHB = ΔAHC (c.h - g.n)

*Cách 2:

Xét ΔAHB và ΔAHC có:

AB = AC (ΔABC cân tại A)

AH: cạnh chung

=> ΔAHB = ΔAHC (c.h - c.g.v)

b) Có: ΔAHB = ΔAHC (câu a)

=> HB = HC (2 cạnh tương ứng)

Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)

c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:

Cạnh huyền HB = HC (câu b)

\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)

=> ΔEBH = ΔFCH (c.h - g.n)

d) Sửa đề: EF // BC

Có: ΔEBH = ΔFCH (câu c)

=> EB = FC (2 cạnh tương ứng)

Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)

Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)

=> AE = AF

=> ΔAEF cân tại A

=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)

Có: ΔABC cân tại A

=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)

Mà 2 góc này lại là 2 góc đồng vị

=> EF // BC

10 tháng 2 2020

A B C H M N

- Ta có : \(\Delta ABC\) cân tại A .

=> AB = AC ( Tính chất tam giác cân )

=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )

- Xét \(\Delta AHB\)\(\Delta AHC\) có :

\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)

=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )

b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )

=> BH = CH ( cạnh tương ứng )

- Xét \(\Delta HMB\)\(\Delta HNC\) có :

\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )

=> MB = NC ( cạnh tương ứng )

Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)

Mà AB = AC (tam giác cân )

=> \(AM=AN\)

- Xét \(\Delta AMN\) có : AM = AN ( cmt )

=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )

c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )

=> \(\widehat{AMN}=\widehat{ANM}\)

\(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)

=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)

=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )

- Ta có : \(\Delta ABC\) cân tại A .

=> \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)

=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )

Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)

Mà 2 góc trên ở vị trí đồng vị .

=> MN // BC ( Tính chất 2 đoạn thẳng song song )

10 tháng 2 2020

d, ( Hình vẽ câu trên nha )

- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :

\(AH^2+BH^2=AB^2\)

9 tháng 5 2017

a) xét tam giác AHB và tam giác AHC

có AH là cạnh chung

AB = AC (gt)

BH = CH ( H là trung điểm của BC )

=> tam giác ABH = tam giác ACH ( c-g-c )

=> góc BAH = góc CAH ( 2 góc tương ứng)

b) tam giác AEH vuông tại E

=> góc EAH + góc EHA = 90 độ ( 2 góc nhọn phụ nhau )

tam giác AFH vuông tại F

=>góc FAH + góc FHA = 90 độ (2 góc nhọn phụ nhau)

mà gócEAH = góc FAH ( 2 góc tương ứng của tam giác BAH = tam giác CAH)

=> góc AHE = góc AHF

xét tam giác AHE và tam giác AHF

có góc EAH = góc FAH ( cm câu a)

AH là cạnh chung

góc AHE = góc AHF ( cm trên )

=> tam giác AHE = tam giác AHF (g-c-g )

=>AE= AF (2 cạnh tương ứng )

=> tam giác AEF cân tại A

c) có BC= 6 cm

mà có H là trung điểm của BC

=> BH = CH = 3cm

xét tam giác ABH vuông tại H

=>AH^2 + BH^2 = AB^2 ( định lý py-ta-go )

=>AH^2 = AB^2 - BH^2

AH^2 = 5^2 - 3^2 (vì AB = 5 cm; BH = 3 cm )

AH^2 = 16

AH= 4 (cm)

9 tháng 5 2017

A B C E F H 1 2

a) Xét hai tam giác vuông AHB và AHC có:

AB = AC (do \(\Delta ABC\) cân tại A)

HB = HC (gt)

AH: cạnh chung

Vậy: \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)

b) Xét hai tam giác vuông AEH và AFH có:

\(\widehat{A_1}=\widehat{A_2}\) (\(\Delta AHB=\Delta AHC\))

AH: cạnh huyền chung

Vậy: \(\Delta AEH=\Delta AFH\left(ch-gn\right)\)

Suy ra: AE = AF (hai cạnh tương ứng)

Do đó: \(\Delta AHF\) cân tại A

c) Vì H là trung điểm của BC

=> AH là đường trung tuyến của \(\Delta ABC\)

\(\Delta ABC\) cân tại A có AM là đường trung tuyến đồng thời là đường cao

Ta có: HB = HC = \(\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

\(\Delta ABH\) vuông tại H, theo định lí Py-ta-go

Ta có: \(AB^2=AH^2+HB^2\)

\(\Rightarrow AH^2=AB^2-HB^2\)

\(AH^2=5^2-3^2\)

\(AH^2=16\)

\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)

6 tháng 6 2020

Câu c là Chứng minh CF<EF<CE nha mn

6 tháng 6 2020

Đề thiếu ở ý b) với c) '-' 

a) Tam giác ABC đều 

=> AB = AC = BC

=> ^A = ^B = ^C = 600

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( cmt )

AH chung

=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó ΔAHB=ΔAHC

b: Xét ΔABC có

H là trung điểm của BC

HD//AC

Do đó: D là trung điểm của AB

Ta có: ΔHDA vuông tại H

mà HD là đường trung tuyến

nên DA=DH

c: Xét ΔABC có

CD là đường trung tuyến

AH là đường trung tuyến

CD cắt AH tai G

Do đó: G là trọng tâm

=>B,G,E thẳng hàng

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

Violympic toán 7

a) Vì tam giác ABC cân tại A

=> AB = AC và Góc ABC = Góc ACB

Xét tam giác AHC và tam giác AHB, ta có:

Góc AHB = AHC ( = 90 độ )

AB = AC (cmt)

Góc ABC = Góc ACB ( cmt)

=> Tam giác AHC = Tam giác AHB ( ch-gn )

b) Vì tam giác AHC = Tam giác AHB ( câu a )

=> BH = HC ( Hai cạnh tương ứng )

Xét tam giác BHN và tam giác CHM, ta có:

BH = HC ( cmt )

Góc BHN = Góc CHM ( Hai góc đối đỉnh )

HN = HM ( gt )

=> Tam giác BHN = Tam giác CHM ( c-g-c )

=> Góc HMC = Góc BNH ( Hai góc tương ứng )

Mà góc HMC và góc BNH là hai góc so le trong

=> BN // AC

c) Xét tam giác MHC và tam giác QHB, ta có:

Góc HMC = Góc HQB ( = 90 độ )

Góc MCH = Góc QBH ( do tam giác ABC cân tại A )

HC = HB ( câu b )

=> Tam giác MHC = Tam giác QHB ( ch-gn )

=> Góc MHC = Góc QHB

Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )

=> Góc QHB = Góc BHN

Xét tam giác AQH và tam giác AMH, ta có:

Góc AQH = Góc AMH ( = 90 độ )

AH là cạnh huyền chung

Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )

=> Tam giác AQH = Tam giác AMH ( ch-gn )

=> QH = HM ( Hai cạnh tương ứng )

Mà HM = HN ( gt )

=> QH = HN

Gọi K là trung điểm của QN

Xét tam giác KHQ và tam giác KHN, ta có:

HQ = HN ( cmt )

Góc QHB = Góc BHN ( cmt )

HK là cạnh chung

=> Tam giác KHQ = Tam giác KHN ( c-g-c )

=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )

Mà góc QKH và góc NKH là hai góc kề bù

=> Góc QKH = Góc NKH = 180/2 = 90 độ

=> HK là đường trung trực của QN

Hay BC là đường trung trực của QN