Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)
\(\widehat{BMD}+\widehat{DBM}=90^0\)
mà \(\widehat{ABM}=\widehat{DBM}\)
nên \(\widehat{BMA}=\widehat{BMD}\)
c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
Suy ra: MA=MD
Xét ΔAME vuông tại A và ΔDMC vuông tại D có
MA=MD
\(\widehat{AME}=\widehat{DMC}\)
Do đó: ΔAME=ΔDMC
Qua A kẻ đường thẳng song song với BC cắt MD tại F.
Vì M là trung điểm AB nên dễ chứng minh tg AMF = tg BMD => AF = BD (1)
Mặt khác vì AD là tia phân giác ^BAH => ^BAD = ^DAH (2)
Và ^ABD = ^CAH (3) ( góc có cạnh tương ứng vuông góc)
Lấy (2) + (3) : ^BAD + ^ABD = ^DAH + ^CAH
<=> ^ADC = ^DAC => tg ACD cân tại C => AC = DC (4)
Ta có: AE/HE = AF/HD = BD/HD (5) (theo (1))
Mà BD/HD = AB/AH (6) ( tính chất phân giác)
Và AB/AH = AC/HC = DC/HC (7) ( vì tg vuông ABH ~ tg vuông CAH và theo (4))
Từ (5); (6); (7) => AE/HE = DC/HC
<=> (AH + HE)/HE = (DH + HC)/HC <=> AH/HE + 1 = DH/HC + 1 <=> AH/HE = DH/HC
=> tg vuông AHD ~ tg vuông EHC => đpcm
a, AH là tia phân giác(gt) => HAB=HAC
xét tâm giác AHB và tam giác AHC:
chung AH
HAB=HAC(cmt)
AB=AC(gt)
=>tam giác AHB bằng tam giác AHC
b, tam giác AHB bằng tam giác AHC(cmt) => AHB = AHC
có: AHB+AHC=180 (kề bù) =>AHB=AHC=90 => AH vuông góc BC
HD vuông góc AB(gt) => HDB =90 độ => tam giác HDB vuông => BHD+ABH=90 độ
AH vuông góc BC(gt) => AHB =90 độ => tam giác AHB vuông => HAB+ABH=90 độ
từ hai điều trên suy ra HAB=BHD vì cùng cộng với AHB bằng 90 độ
bạn kiểm tra hộ mik nha
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.