Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tan giác ABH và ACH
AB=AC (gt)
BH=BC (gt)
AH là cạnh chung
vây tam giác ABH=ACH (c.c.c)
vậy goc AHB=AHC (2 góc tương ứng)
vì AHB+AHC=180 (kề bù)
Mà AHB=AHC
vậy AHB=AHC=180:2=90
vậy AH vuông góc với BC
vi CB vuông góc Cx (gt)
AH vuông góc BC (cmt)
vậy Cx//AH
tam giác vuông EBC có E+B=90
tam giác vuông AHB có BAH+ B=90
Vậy BAH=BEC hay BAH=AEC
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
A B C H D 35°
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
a)
Xét tam giác AHB và tam giác DBH có:
AH = DB (gt)
AHB = DBH (= 900)
BH chung
=> Tam giác AHB = Tam giác DBH (c.g.c)
b)
DB _I_ BC (gt)
AH _I_ BC (gt)
=> DB // AH
c)
Tam giác HAB vuông tại H có:
HAB + HBA = 900
350 + HBA = 900
HBA = 900 - 350
HBA = 550
Tam giác ABC vuông tại A có:
ABC + ACB = 900
550 + ACB = 900
ACB = 900 - 550
ACB = 350
a) \(\Delta AHB\)và \(\Delta AHC\)có :
\(AB=AC\)( vì \(\Delta ABC\)là tam giác cân )
\(AH\)là cạnh chung
\(BH=CH\)( vì H là trung điểm của BC )
Do đó : \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)
bn ơi mk xl nha, mk ko biết vẽ hình trên olm!!!
\(\Delta ABC\)cân tại \(A\) có \(H\)là trung điểm \(BC\)
\(\Rightarrow\)\(AH\)là trung tuyến đồng thời là đường cao
\(\Rightarrow\)\(AH\perp BC\)
\(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}=90^0\)
Xét 2 tam giác vuông: \(\Delta AHB\)và \(\Delta AHC\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\) (gt)
suy ra: \(\Delta AHB=\Delta AHC\) (ch_gn)
a: Gọi H và M lần lượt là trung điểm của AB,AC
=>AH=AM
Xét ΔAHO vuông tại H và ΔAMO vuông tại M có
AO chung
AH=AM
Do đó: ΔAHO=ΔAMO
=>góc HAO=góc MAO
=>AO là phân giác của góc BAC(1)
b: Xét ΔABK vuông tại B và ΔACK vuông tại C có
AK chung
AB=AC
Do đó: ΔABK=ΔACK
=>góc BAK=góc CAK
=>AK là phân giác của góc BAC(2)
c: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔADB=ΔAEC
=>AD=AE
Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do dó: ΔAEH=ΔADH
=>góc EAH=góc DAH
=>AH làphân giác của góc BAC(3)
Từ (1), (2) và (3) suy ra A,O,K thẳng hàng
a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:
\(BH:\)cạnh chung
\(AH=DB\)(gt)
Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)
b) Vì \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên \(AB//DH\)
c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)
hay \(\widehat{ABC}=55^0\)
\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)
Vậy \(\widehat{ACB}=35^0\)
Sao lại \(\widehat{A}>\widehat{B}\) là \(90^0\) là sao em? Roxie
goc A lon hon goc B la 900 ik Vũ Minh Tuấn