K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

29 tháng 5 2017

ĐỀ QUẬN BÌNH TÂN NĂM 2016 - 2017

a) Xét \(\Delta ABH\)và \(\Delta ACH\)ta có:

AH là cạnh chung

AB = AC ( \(\Delta ABC\)cân tại A)

BH = CH ( H là trung điểm của BC)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right)\)

Xét \(\Delta ABC\)cân tại A ta có:

AH là đường trung tuyến ( H là trung điểm của BC)

\(\Rightarrow\)AH là đường cao của \(\Delta ABC\)

\(\Rightarrow AH⊥BC\)tại H.

b) Xét \(\Delta BDH\)vuông tại D và \(\Delta CEH\)vuông tại E ta có:

BH = CH ( H là trung điểm của BC)

\(\widehat{DBH}=\widehat{ECH}\)(\(\Delta ABC\)cân tại A)

\(\Rightarrow\Delta BDH=\Delta CEH\left(ch-gn\right)\)

\(\Rightarrow\)BD = CE ( 2 cạnh tương ứng)

c) Ta có:

AB = AC (\(\Delta ABC\)cân tại A)

BD = CE ( cmt)

\(\Rightarrow AB-BD=AC-CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{DAE}}{2}\)

Mà \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Nên \(\widehat{ADE}=\widehat{ABC}\)

Mặt khác 2 góc này nằm ở vị trí đồng vị

\(\Rightarrow\)DE // BC.

d) Nối A với I.

Ta có: 

\(\hept{\begin{cases}HE=HM+ME\left(M\in HE\right)\\HM=EN\left(gt\right)\end{cases}}\)

\(\Rightarrow HE=EN+ME\)

\(\Rightarrow HE=MN\)

Xét \(\Delta AEN\)vuông tại E ta có:

\(\hept{\begin{cases}AN^2=AE^2+EN^2\left(Pitago\right)\\AE=AD\left(cmt\right)\\EN=HM\left(gt\right)\end{cases}}\)

\(\Rightarrow AN^2=AD^2+HM^2\)

\(\Rightarrow AN^2=AD^2+HI^2-MI^2\)

\(\Rightarrow AN^2=AD^2+HI^2-\left(NI^2-MN^2\right)\)

\(\Rightarrow AN^2=AD^2+HI^2-NI^2+HD^2\)

\(\Rightarrow AN^2=AD^2+HD^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AH^2+HI^2-NI^2\)

\(\Rightarrow AN^2=AI^2-NI^2\)

\(\Rightarrow AI^2=AN^2+NI^2\)

\(\Rightarrow\Delta ANI\)vuông tại N ( Định lý Pitago đảo)

\(\Rightarrow IN⊥AN\)tại N.

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)