Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g AME và t/g DMB có:
AM=DM (gt)
AME=DMB ( đối đỉnh)
ME=MB (gt)
Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)
b) t/g AME = t/g DMB (câu a)
=> AE=BD (2 cạnh tương ứng) (1)
AEM=DBM (2 góc tương ứng)
Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)
(1) và (2) là đpcm
c) Xét t/g AKE và t/g CKD có:
AEK=CDK (so le trong)
AE=CD ( cùng = BD)
EAK=DCK (so le trong)
Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)
d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)
=> AF = DC (2 cạnh tương ứng)
AFM=DCM (2 góc tương ứng)
Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC
Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)
Mà AF=DC=BD=AE (4)
Từ (3) và (4) => A là trung điểm của EF (đpcm)
a) Vì tam giác ABC cân tại A=> AB=AC =>\(\frac{AB}{2}=\frac{AC}{2}\)  => AD=AE
Xét tam giác ABE và tam giác ACD có:
AB=AC
góc A: chung
AE=AD
=> tam giác ABE= tam giác ACD (c.g.c)
b) Theo câu a) tam giác ABE= tam giác ACD
=> BE=CD
c) Vì tam giác ABC cân tại A => góc ABC = góc ACD =>\(\frac{ABC}{2}=\frac{ACB}{2}\)=> góc EBC= góc DCB
Xét tam giác BCD và tam giác CBE có:
góc DBC = góc ACB
BC: chung
goc DCB= goc EBC
=> tam giac BCD= tam giac CBE (g.c.g)
=> BD=EC
Xét tam giác BKD và tam giác CKE co:
goc BDK= goc CEK=90 do
BD= EC
góc DBK= goc ECK
=> tam giac BKD = tam giac CKE (g.c.g)
=> BK=CK
=> tam giác KBC cân tại K
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
\(AC^2+AB^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\) (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
\(\Rightarrow\Delta BEH=\Delta BAC\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.
Bài giải :
a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:
AC2+AB2=BC2
⇒AC2=BC2−AB2=152−92=144
⇒AC=12(cm)
b) Xét tam giác vuông ABD và tam giác vuông EBD có:
BA = BE (gt)
Cạnh BD chung
⇒ΔABD=ΔEBD (Cạnh huyền - cạnh góc vuông)
c) Xét tam giác vuông BEH và tam giác vuông BAC có:
Góc B chung
BE = BA
⇒ΔBEH=ΔBAC (Cạnh góc vuông và góc nhọn kề)
⇒BH=BC hay tam giác HBC cân tại B.
a/ Xét tam giác ABE và ACD:
Góc A: chung
AB=AC (gt)
AE=AD ( do AB= AC nên trung điểm của AB=AC bằng nhau)
=> Hai tam giác ABE=ACD ( c.g.c)
b/ Do tam giác ABE=ACD nên BE= CD ( hai cạnh tương ứng)
c/ Do góc ABC= ACB ( ABC cân A)
-> Góc ABE=ACE ( do ABE=ACD)
=> ABC-ABE=ACB-ACE
Vậy: Tam giác KBC cân K ( do góc KBC=KCB)
d/ Bạn tự làm nhé, vẽ hình ra rồi làm, ở đây vẽ hình là đợi duyệt lâu lắm
Xét tam giác ABE và tam giác ACD có:
góc A chung
AB=AC(tam giác ABC cân tại A)
AD=AE(trung điểm của 2 cạnh bằng nhau)
=> tam giác ABE=tam giác ACD(c-g-c)