K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

a) Xét t/g AME và t/g DMB có:

AM=DM (gt)

AME=DMB ( đối đỉnh)

ME=MB (gt)

Do đó, t/g AME = t/g DMB (c.g.c) (đpcm)

b) t/g AME = t/g DMB (câu a)

=> AE=BD (2 cạnh tương ứng) (1)

AEM=DBM (2 góc tương ứng)

Mà AEM và DBM là 2 góc ở vị trí so le trong nên AE // BC (2)

(1) và (2) là đpcm

c) Xét t/g AKE và t/g CKD có:

AEK=CDK (so le trong)

AE=CD ( cùng = BD)

EAK=DCK (so le trong)

Do đó, t/g AKE = t/g CKD (g.c.g) (đpcm)

d) Dễ dàng c/m t/g AMF = t/g DMC (c.g.c)

=> AF = DC (2 cạnh tương ứng)

AFM=DCM (2 góc tương ứng)

Mà AFM và DCM là 2 góc ở vị trí so le trong nên AF //BC

Lại có: AE // BC (câu b) suy ra AF trùng với AE hay A,E,F thẳng hàng (3)

Mà AF=DC=BD=AE (4)

Từ (3) và (4) => A là trung điểm của EF (đpcm)

15 tháng 12 2016

C.ơn p nha

4 tháng 2 2016

a) Vì tam giác ABC cân tại A=> AB=AC =>\(\frac{AB}{2}=\frac{AC}{2}\)  => AD=AE

Xét tam giác ABE và tam giác ACD có:

AB=AC

góc A: chung

AE=AD

=> tam giác ABE= tam giác ACD (c.g.c)

b) Theo câu a) tam giác ABE= tam giác ACD

=> BE=CD

c) Vì tam giác ABC cân tại A => góc ABC = góc ACD =>\(\frac{ABC}{2}=\frac{ACB}{2}\)=> góc EBC= góc DCB

Xét tam giác BCD và tam giác CBE có:

góc DBC = góc ACB

BC: chung

goc DCB= goc EBC 

=> tam giac BCD= tam giac CBE (g.c.g)

=> BD=EC

Xét tam giác BKD và tam giác CKE co:

goc BDK= goc CEK=90 do 

BD= EC

góc DBK= goc ECK

=> tam giac BKD = tam giac CKE (g.c.g)

=> BK=CK

=> tam giác KBC cân tại K

 

 

 

4 tháng 2 2016

minh moi hok lop 6 thoi

11 tháng 4 2018

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      \(AC^2+AB^2=BC^2\)

\(\Rightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

\(\Rightarrow AC=12\left(cm\right)\)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\)  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

\(\Rightarrow\Delta BEH=\Delta BAC\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BH=BC\) hay tam giác HBC cân tại B.

17 tháng 8 2018

Bài giải : 

a) Xét tam giác vuông ABC, áp dụng định lý Pi-ta-go ta có:

      AC2+AB2=BC2

⇒AC2=BC2−AB2=152−92=144

⇒AC=12(cm)

b) Xét tam giác vuông ABD và tam giác vuông EBD có:

BA = BE (gt)

Cạnh BD chung

⇒ΔABD=ΔEBD  (Cạnh huyền - cạnh góc vuông)

c) Xét tam giác vuông BEH và tam giác vuông BAC có:

Góc B chung

BE = BA 

⇒ΔBEH=ΔBAC  (Cạnh góc vuông và góc nhọn kề)

⇒BH=BC hay tam giác HBC cân tại B.

12 tháng 2 2016

a/ Xét tam giác ABE và ACD:

    Góc A: chung

    AB=AC (gt)

   AE=AD ( do AB= AC nên trung điểm của AB=AC bằng nhau)

=> Hai tam giác ABE=ACD ( c.g.c)

b/ Do tam giác ABE=ACD nên BE= CD ( hai cạnh tương ứng)

c/ Do góc ABC= ACB ( ABC cân A)

 -> Góc ABE=ACE ( do ABE=ACD)

 => ABC-ABE=ACB-ACE

Vậy: Tam giác KBC cân K ( do góc KBC=KCB)

d/ Bạn tự làm nhé, vẽ hình ra rồi làm, ở đây vẽ hình là đợi duyệt lâu lắm

Xét tam giác ABE và tam giác ACD có: 

góc A chung

AB=AC(tam giác ABC cân tại A)

AD=AE(trung điểm của 2 cạnh bằng nhau)

=> tam giác ABE=tam giác ACD(c-g-c)