Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a. Tính số đo góc HAB
Trong tam giác HAB vuông tại H, ta có
- góc HAB = 180 độ - góc AHB - góc HBA = 180 độ - 90độ - 60độ = 30 độ (đpcm)
b. Trên cạnh AC lấy điểm D sao cho AD = AH. Gọi I là trung điểm của cạnh HD. Chứng minh tam giác AHI=tam giác ADI. Từ đó suy ra AI vuông góc với HD
Xét tam giác DIA và tam giác HIA, có
- DI = HI (I là trung điểm DH)
- cạnh IA chung
- AD = AH (giả thiết)
=> tam giác DIA = tam giác HIA (cạnh - cạnh - cạnh) (đpcm)
Ta có AD = AH => tam giác ADH cân tại A
mà I là trung điểm DH
=> AI là trung trực, trung tuyến, phân giác của tam giác cân ADH
=> AI vuông góc HD(đpcm)
c. Tia AI cat cạnh HC tại điểm K. Chứng minh AB // KD
Xét tam giác ADK và tam giác AHK, có
- AD = AH (giả thiết)
- góc DAK = góc HAK (do AI là phân giác của tam giác cân DAH; mà A,I,K thẳng hàng => AK là phân giác góc DAH)
- cạnh AK chung
=> tam giác ADK = tam giác AHK
=> góc ADK = góc AHK
mà AHK = 90 độ
=> góc ADK = 90 độ
Ta có góc ADK = 90 độ
=> KD vuông góc AC
mà AB cũng vuông góc AC (do tam giác vuông tại A)
=> AB // KD
A B C D E
Giải :
a)xét t/giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}=180^0-\widehat{A}-\widehat{C}=180^0-60^0-40^0=80^0\)
Do DE // BC => \(\widehat{B}+\widehat{BED}=180^0\)(trong cùng phía)
=> góc BED = 1800 - góc B = 1800 - 800 = 1000
Xét t/giác BCD có góc DBC + góc C + góc BDC = 1800 (tổng 3 góc của 1 t/giác)
=> góc DBC = 1800 - góc C - góc BDC = 1800 - 1200 - 400 = 200
Do DE // BC => góc CBD = góc BDE (so le trong)
Mà góc DBC = 200 => góc BDE = 200
b) Ta có: góc ABD + góc DBC = 800
=> góc ABD = 800 - góc DBC = 800 - 200 = 600 (1)
Do DF là tia p/giác của góc BDC nên:
góc BDF = góc FDC = góc BDC/2 = 1200/2 = 600 (2)
Mà góc ABD và góc BDF ở vị trí so le trong (3)
từ (1);(2);(3) => DF // AB
c) Xét t/giác EBD và t/giác FDB
có góc EBD = gióc BDF = 600 (cmt)
BD : chung
góc EDB = góc DBF = 200 (cmt)
=> t/giác EBD = t/giác FDB (g.c.g)
=> DF = BE (hai cạnh tương ứng)
a, vì Dx//BC =>GÓC xDA=ACB (so le trong ) . Mà xDA=70 độ =>góc ACB=70 độ
b,ta có : CAB +DAB=180 độ (KỀ BÙ) Mà CAB=40 độ
=>40 + DAB =180 => DAB=140
VÌ ; Ay là phân giác của góc BAD => DAy=BAy=BAD/2=140/2=70
mÀ xDA=70
=>xDA=DAy. 2 góc này ở vị trì so le trong =>Dx//Ay. Dx//BC =>Ay//BC