Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.
chững minh đc dãy này lớn hơn 1 và nhỏ hơn 2 thì suy ra dãy này la phân số tối giản
Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?
Ta có:a/b<c/d<=>a.d<b.c
<=>2018a.d<2018b.c
<=>2018a.d+c.d<2018b.c+d.c
<=>d(2018a+c)<c(2018b+d)
<=>2018a+c/2018b+d<c/d(dpcm)
Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)
\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)
\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)
còn cái nịttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản
=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)
=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)
b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)
Gọi D là UCLN (a, b). Ta kí hiệu là (a, b). Áp dụng tính chất: P/s tối giản là p/s có UCLN = 1.
Ta có:
(a, b) = D = 1
\(\Rightarrow\frac{a}{b}=1\)
\(\Rightarrow\frac{2a+b}{a\left(a+b\right)}=\frac{2a+b}{a}+\frac{2a+b}{a+b}\). Mà (a, b) = 1
\(\Rightarrow\frac{2a+b}{a}+\frac{2a+b}{a+b}=\frac{2a+b}{D}+\frac{2a+b}{D+b}=\frac{2a+b}{1}+\frac{2a+b}{1+b}=\frac{2a+b}{1\left(1+b\right)}=1^{\left(đpcm\right)}\)