K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021
Còn cái nịt
31 tháng 8 2021

còn cái nịttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt

19 tháng 2 2019

dit me may

20 tháng 2 2019

Người lái xe trước khi đi thấy chỉ còn 3/5 thùng xăng, sợ không đủ nên người đó mua thêm 14 lít xăng nữa. Khi về tới nhà anh thấy chỉ còn 1/3 thùng xăng và tính ra xe tiêu thụ hết 30 lít xăng trong chuyến đi đó. Hỏi thùng xăng chứa bao nhiêu lít xăng?

10 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2019ad< 2019bc\)

\(\Leftrightarrow2019ad+cd< 2019bc+cd\)

\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)

\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)

20 tháng 3 2016

chững minh đc dãy này lớn hơn 1 và nhỏ hơn 2 thì suy ra dãy này la phân số tối giản

4 tháng 3 2018

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

=> đpcm

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

a) Ta có:

ab=c+d

abcd=0

⇒2a(abcd)=0

⇒2a2−2ab−2ac−2ad=0

Do đó:

a2+b2+c2+d2

=a2+b2+c2+d2+2a2−2ab−2ac−2ad

=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)

=(ab)2+(ac)2+(ad)2

Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương

b) Ta có:

a+b+c+d=0

a+b+c=−d

a2+ab+ac=−da

bcda=a2+ab+ac+bc

bcda=a(a+b)+c(a+b)

bcda=(a+b)(a+c)(1)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ac+bc+c2=−dc

abcd=ac+bc+c2+ab

abcd=c(a+c)+b(a+c)

abcd=(a+c)(b+c)(2)

Ta lại có:

a+b+c+d=0

a+b+c=−d

ab+b2+bc=−db

cadb=ca+ab+b2+bc

cadb=a(b+c)+b(b+c)

cadb=(b+c)(a+b)(3)

Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:

(abcd)(bcda)(cadb)

=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)

=(a+c)2.(b+c)2.(a+b)2

=[(a+c)(b+c)(a+b)]2

Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương

1 tháng 8 2018

LẠM DỤNG QUÁ NHIỀU