K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

                           \(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

ADTCDTSBN

có: \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=\frac{a^2}{b^2}=\frac{c^2}{d^2}\right)\) ( đ p c m)

9 tháng 2 2016

Từ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)(1)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) và (2) =>\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 2 2016

vì a/b = c/d suy ra a + b/c+d = a/b = c/d suy ra a^2 / b^2 = c^2 / d^2 = (a+b/ c+d) ^2

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 a^2 / b^2 = c^2 / d^2 = ( a+b/c+d)^2 = a^2 + b^2 / c^2+ d^2 ( đpcm)

12 tháng 3 2017

Đặt  \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

=> \(A=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Đặt A < (1/40+.....+1/40)+(1/60+1/60+...+1/60)

=>A<1/2+1/3=5/6<3/2

lớn hơn 11/15 cũng tương tự thôi bạn tự làm sẽ thú vị hơn đấy

k minh nha

12 tháng 3 2017

Thank you

8 tháng 7 2019

Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)

Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)

8 tháng 7 2019

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

<=> a2cd + b2cd = abc2 + abd2

<=> a2cd - abd2 = abc2 - b2cd

<=> ad(ac - bd)  = bc(ac - bd) 

<=> ad = bc

<=> \(\frac{a}{b}=\frac{c}{d}\)

31 tháng 1 2016

a/b=c/d=a/c=b/d=a+b/c+d=(a+b)^2/(c+d)^2=(a+b/c+d)^2 (1)

a/b=c/d=a/c=b/d=(a/c)^2=(b/d)^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (2)

(1),(2)=> (a+b/c+d)^2=a^2+b^2/c^2+d^2

27 tháng 7 2017

đề sai r bn, cái sau p là a/a+c = b/b+d

3 tháng 11 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(VT=\frac{a}{a+c}=\frac{bk}{bk+dk}=\frac{bk}{k\cdot\left(b+d\right)}=\frac{b}{b+d}\)

\(\Rightarrow VT=VT\)

Hay \(\frac{a}{a+c}=\frac{b}{b+d}\left(đpcm\right)\)

đặta/b=c/d=k.

ta có:  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow c=ak,d=bk\)

thay vào đẳng thức ,ta có:

\(\frac{a}{a+c}=\frac{a}{a+ak}=\frac{a}{a\left(1+k\right)}=\frac{1}{1+k}\)(1)

\(\frac{b}{b+d}=\frac{b}{b+bk}=\frac{b}{b\left(1+k\right)}=\frac{1}{1+k}\)(2)

từ 1 và 2 suy ra:

\(\frac{a}{a+c}=\frac{b}{b+d}\)(đpcm)

13 tháng 8 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

Từ (1)(2) => đpcm

13 tháng 8 2018

hinh nhu sai de ban oi